Earth curvature of space2 curvature of space1
Банк задач

Задача FIZMATBANK.RU

Вход на сайт
Регистрация
Забыли пароль?
Статистика решений
Тип решенияКол-во
подробное решение60032
краткое решение7560
указания как решать1341
ответ (символьный)4704
ответ (численный)2335
нет ответа/решения3772
ВСЕГО79744
Задачники
Задачи по общей физике
Иродов И.Е., 2010
 
Задачник по физике
Чертов, 2009
 
Сборник задач по курсу физики
Трофимова Т.И., 2008
 
Сборник задач по общему курсу физики
Волькенштейн В.С., 1997
 
Физика. Задачи для поступающих в ВУЗы
Бендриков Г.А.,Буховцев Б.Б.,Керженцев В.В.,Мякишев Г.Я., 2005
 
Физика. Методические указания и контрольные задания.
Чертов А.Г., 1987
 
Физика. Задачи с ответами и решениями
Черноуцан А.И., 2009
 
Сборник задач по общему курсу ФИЗИКИ
Волькенштейн В.С., 2008
 
Сборник вопросов и задач по физике. 10-11 класс.
Гольдфарб Н.И., 1982
 
Задачи по общей физике
Иродов И.Е., 1979
 
Сборник задач по физике
Кашина С.И., Сезонов Ю.И., 2010
 
Сборник задач по физике
Козел С.М., Баканина Л.П., Белонучкин В.Е. и др., 1971
 

Описание задачи ID=74624

Рубрика: Другое / разные задачи

Чтобы вычислить потенциал V иона в присутствии всех других ионов кристалла, Эвальд предложил следующий метод, который приводит к быстро сходящимся рядам. К точечному заряду qj на месте каждого j-го иона, не совпадающего с фиксированным i-м ионом, добавляется гауссово распределение заряда (гауссовы заряды) pj(r) = -qj(h/п)^3/2 ехр(-hr2) (3.11.1) с общим зарядом -qj; h — подгоночный параметр, определяющий ширину гауссова распределения. Вклады от точечных и гауссовых зарядов во всех местах, где j # i, qj [1/rij - 1/rij int p(r)dr - int p(r)/r dr] приводят к потенциалу V' = E qj/rij(1 - int exp(-s2)ds) (3.11.2) на i-м месте. Далее с помощью разложения в ряд Фурье можно легко получить потенциал V" на i-й месте, обусловленный второй совокупностью гауссовых зарядов +qj на всех местоположениях ионов: V" = 4п/D E{Eqi ехр(-ik*rl)k^-2 ехр(-k2/4h)}, (3.11.3) где k — вектор обратной решетки, умноженный на 2п, и где единичная ячейка объема D, связанная с каждым узлом решетки Бравэ, содержит ионы с зарядами qi в местоположениях, отстоящих на ri от узла решетки. В величину V" входит вклад V''' от второй совокупности гауссовых зарядов, расположенных в i-х положениях: V'" = 2qi |/h/п. (3.11.4) Следовательно, искомый потенциал равен V = ####. (3.11.5) Преимущество этого метода перед другими при суммировании в решетке заключается в том, что при разумном выборе параметра h оба ряда в уравнении (3.11.5) быстро сходятся. Проверить выражения (3.11.2), (3.11.3), (3.11.4) для различных вкладов в искомый потенциал. а) Найти приближенное значение постоянной Маделунга для CsCl, ограничившись суммированием только по ближайшим соседям (первая координационная сфера), представляя векторы k как 2п/а (±1, 0, 0) и положив h = 16/3 а2. Обобщить вычисления на случаи, когда: б) включаются следующие соседние ионы (вторая координационная сфера), а векторы k = 2п/а (±1, ±1, ±1); в) включаются третьи соседи (третья координационная сфера), а векторы k = 2п/а (±2, ±1, 0); г) проделать те же вычисления для NaCl, учитывая ближайших и следующих за ближайшими соседей, а векторы k представляя в виде 2п/а(±1, ±1, ±1) и 2п/а(±3, ±1, ±1). Параметр h положить равным 16/а2. Учесть, что векторы обратной решетки k, использующиеся при вычислении постоянной Маделунга, для NaCl и CsCl могут оказаться неодинаковыми.

Решение
Подробное решение
Стоимость: 10 руб.
Чтобы получить решение нужно зарегистрироваться и войти на сайт

Рейтинг:

 (голосов: 0)

 

Решения пользователей (0)


Дополнительные решения станут доступны после получения основного решения