Earth curvature of space2 curvature of space1
Банк задач

Задача FIZMATBANK.RU

Вход на сайт
Регистрация
Забыли пароль?
Статистика решений
Тип решенияКол-во
подробное решение60032
краткое решение7560
указания как решать1341
ответ (символьный)4704
ответ (численный)2335
нет ответа/решения3772
ВСЕГО79744
Задачники
Задачи по общей физике
Иродов И.Е., 2010
 
Задачник по физике
Чертов, 2009
 
Сборник задач по курсу физики
Трофимова Т.И., 2008
 
Сборник задач по общему курсу физики
Волькенштейн В.С., 1997
 
Физика. Задачи для поступающих в ВУЗы
Бендриков Г.А.,Буховцев Б.Б.,Керженцев В.В.,Мякишев Г.Я., 2005
 
Физика. Методические указания и контрольные задания.
Чертов А.Г., 1987
 
Физика. Задачи с ответами и решениями
Черноуцан А.И., 2009
 
Сборник задач по общему курсу ФИЗИКИ
Волькенштейн В.С., 2008
 
Сборник вопросов и задач по физике. 10-11 класс.
Гольдфарб Н.И., 1982
 
Задачи по общей физике
Иродов И.Е., 1979
 
Сборник задач по физике
Кашина С.И., Сезонов Ю.И., 2010
 
Сборник задач по физике
Козел С.М., Баканина Л.П., Белонучкин В.Е. и др., 1971
 

Описание задачи ID=72967

Задачник: Сборник вопросов и задач по общей физике, Савельев И.В., 2005 год

Рубрика: Механика / Динамика

Можно доказать, что момент инерции всякого тела, вычисленный относительно любой оси, проходящей через центр масс тела, связан с главными моментами инерции lх, ly, lz (т. е. моментами инерции относительно главных осей) соотношением l = Ix cos2а + Iy cos2b + lz cos2у, где а, b, у - углы, образованные данной осью с осями х, у, z. Основываясь на этом, показать, что момент инерции однородного куба относительно любой оси, проходящей через его центр, одинаков (как и у шара!).

Решение
Нет ответа/решения

Рейтинг:

 (голосов: 0)

 

Решения пользователей (0)