Earth curvature of space2 curvature of space1
Банк задач

Вход на сайт
Регистрация
Забыли пароль?
Статистика решений
Тип решенияКол-во
подробное решение57480
краткое решение7556
указания как решать1341
ответ (символьный)4703
ответ (численный)2335
нет ответа/решения3776
ВСЕГО77191

База задач ФизМатБанк

 67701. Активность изотопа углерода 14|6С в древних деревянных предметах составляет 4/5 активности этого изотопа в свежесрубленных деревьях. Определите возраст древних предметов.
 67702. Определите энергию ядерной реакции 7|3Li + 1|1H -- > 2 4|2He.
 67703. Для плавления алюминия используется энергия, выделяющаяся при позитронном b-распаде изотопов углерода 11|6С, причем каждое ядро углерода испускает один позитрон. Продукты распада не радиоактивны. Сколько потребуется углерода 11|6С для выполнения плавки М = 100 т алюминия за t = 30 мин, если начальная температура алюминия Q0 = 20°С?
 67704. Найдите кинетическую энергию нейтрона, который образуется в результате ядерной реакции 2|1Н + 3|1Н -- > 4|2Не + 1|0n. Кинетическую энергию дейтерия и трития не учитывать.
 67705. Реакцию синтеза дейтерия и трития 2|1H + 3|1H — > 4|2a + 1|0n получают, направляя ускоренные до энергии Eд = 2 МэВ ионы дейтерия на практически неподвижные атомы трития (тритиевую мишень). Детектор регистрирует нейтроны, вылетающие перпендикулярно направлению потока дейтронов. Определите энергию Еп регистрируемых нейтронов, если в реакции выделяется энергия dЕ = 17,6 МэВ.
 67706. Нейтрон испытал упругое соударение с первоначально покоившимся дейтроном. Определите долю h кинетической энергии, теряемую нейтроном при любом соударении. Массы покоя нейтрона и дейтрона соответственно равны m1 и m2.
 67707. Движение материальной точки описывается следующими уравнениями: x = 2 + 3t, y = 1 + 4t, в которых координаты х и у, а также время t заданы в единицах СИ. Найти скорость точки.
 67708. Для материальной точки, движущейся по оси ОХ, зависимость координаты от времени выражается уравнением x = 6 - 4t + t2, в котором все величины заданы в единицах СИ. Определить через t1 = 5 с после начала движения координату точки, ее скорость и пройденный путь.
 67709. Над ямой глубиной h бросают вертикально вверх камень с начальной скоростью v0. Через какое время камень упадет на дно ямы? Сопротивление воздуха не учитывать.
 67710. По наклонной плоскости из точки О толкнули снизу вверх небольшой шарик. Точку A, находящуюся на некотором расстоянии l от точки О, шарик проходит с промежутком времени т между моментами прохождения. Найти начальную скорость шарика и время, за которое он вернется в точку О. Ускорение шарика считать постоянным и равным а.
 67711. С самолета, летящего горизонтально с постоянной скоростью v0 = 125 м/с на высоте h = 1960 м, сброшен небольшой предмет. На каком расстоянии от самолета будет находиться предмет: через t1 = 10 с после выбрасывания; через t2 = 25 с? Сопротивление воздуха не учитывать.
 67712. Первую половину пути автомобиль двигался со скоростью v1 = 50 км/ч, а вторую — со скоростью v2 = 80 км/ч. Найти среднюю скорость автомобиля на всем пути.
 67713. Тело падает без начальной скорости с высоты h. Найти среднюю скорость на нижней половине пути. Сопротивление воздуха не учитывать.
 67714. Капли дождя, падающие отвесно, образуют на окне движущегося трамвая полосы под углом а = 30° к вертикали. Скорость трамвая v1 = 5 м/с. Какова скорость капель относительно земли?
 67715. Обруч катится по горизонтальной плоскости со скоростью v без проскальзывания. Определить мгновенные скорости нижней и верхней точек обруча.
 67716. С башни высотой H брошен камень с начальной скоростью v0, направленной под углом а к горизонту. Пренебрегая сопротивлением воздуха, определить дальность полета камня по горизонтальному направлению и скорость его в момент падения на землю.
 67717. Из пункта А выехал велосипедист со скоростью v1 = 4 м/с. Навстречу ему выехал на т = 5 с позже второй велосипедист из пункта В, расположенного на расстоянии s = 120 м от пункта А. Скорость второго велосипедиста v2 = 6 м/с. Построить графики движения велосипедистов и по графикам определить время их встречи и расстояние от места встречи до пункта А.
 67718. Два автомобиля, расстояние между которыми s = 250 м, начинают одновременно двигаться навстречу друг другу с ускорениями а1 = 2 м/с2 и а2 = 3 м/с2. Построить графики движения автомобилей и по графикам найти время их встречи и расстояние от места встречи до пункта, из которого выехал первый автомобиль.
 67719. На рисунке , а изображен график зависимости координаты некоторого тела, движущегося прямолинейно вдоль оси ОХ, от времени. Криволинейные участки графика являются частями парабол. Построить графики зависимости скорости и ускорения от времени.
 67720. Тело, имеющее начальную скорость v0 = 20 м/с, двигалось прямолинейно с постоянным ускорением и через т = 10 с остановилось. Построить график скорости тела и, используя этот график, найти перемещение и путь, пройденный телом.
 67721. Найти графическим способом перемещение и путь, пройденный за t1 = 5 с материальной точкой, движение которой вдоль оси ОХ описывается уравнением х = 6 - 4t + t2, где все величины выражены в единицах СИ.
 67722. Два тела, массы которых m1 и m2, связаны невесомой нерастяжимой нитью и лежат на горизонтальной плоскости. С каким ускорением будут двигаться эти тела, если к телу массой m1 приложить горизонтально направленную силу F1? Трением между телом и плоскостью пренебречь.
 67723. На пружине, длина которой в недеформированном состоянии равна l0, подвешен неподвижный блок. Через него перекинута нить, к концам которой прикреплены грузы массами m1 и m2 > m1. Пренебрегая трением и считая нить невесомой и нерастяжимой, а блок невесомым, определить ускорение, с которым будут двигаться грузы, силу натяжения нити, а также длину пружины, если известно, что ее жесткость равна k.
 67724. По наклонной плоскости, составляющей с горизонтом угол а, движется вверх груз массой m, к которому приложена сила F, направленная под углом b к наклонной плоскости. Коэффициент трения скольжения равен ц. Найти ускорение тела.
 67725. Тело начинает скользить с верхней точки наклонной плоскости, высота которой равна h, а угол с горизонтом а. Найти скорость тела в конце плоскости, если коэффициент трения равен ц, начальная скорость тела равна нулю.
 67726. Тело массой m скользит по горизонтальной плоскости под действием силы F, направленной под углом а к горизонту. Найти ускорение тела, если коэффициент трения равен ц.
 67727. К телу массой m = 10 кг, покоящемуся на горизонтальной плоскости, приложены сила F1 = 10 Н, составляющая с плоскостью угол а = 60° и сила F2 = 20 Н, направленная горизонтально. Определить ускорение, с которым тело начнет двигаться, если известно, что коэффициент трения скольжения ц = 0,1.
 67728. К грузу массой m1 = 20 кг, находящемуся на наклонной плоскости, привязана нить, перекинутая через блок. К другому концу нити подвешен груз массой m2 = 4 кг. С каким ускорением будут двигаться грузы, если угол наклона плоскости а = 30°? Нить считать невесомой и нерастяжимой. Коэффициент трения ц = 0,2.
 67729. С какой силой будет давить на дно лифта груз массой m, если лифт движется: с ускорением а, направленным вверх; с ускорением а, направленным вниз; свободно падает?
 67730. Шарик массой m = 100 г подвешен на невесомой и нерастяжимой нити. В натянутом состоянии нить расположили горизонтально и отпустили шарик. Какова сила натяжения нити в момент, когда она образует с вертикальным направлением угол а = 60°?
 67731. Шарик массой m, прикрепленный к нити, движется равномерно по окружности в горизонтальной плоскости (конический маятник). Расстояние от точки подвеса до горизонтальной плоскости равно h. Найти угловую скорость шарика.
 67732. Определить вес тела массой m = 1000 кг и ускорение свободного падения на полюсе, на экваторе и на широте ф = 60°, если известно, что средний радиус Земли R = 6,37*10^6 м, масса Земли M = 5,98*10^24 кг, гравитационная постоянная G = 6,67*10^-11 Н*м2/кг2. Тело покоится относительно Земли.
 67733. Мяч массой m подлетает к вертикальной стенке со скоростью v1, направленной перпендикулярно стенке, ударяется о нее и отскакивает с такой же по модулю скоростью. Определить среднюю силу удара мяча о стенку, если продолжительность удара равна t.
 67734. Шарик массой m, движущийся со скоростью v, направленной под углом а к гладкой стенке, абсолютно упруго ударяется о нее и отскакивает. Продолжительность удара равна t. Определить среднюю силу, с которой шарик действует на стенку при ударе.
 67735. Лестница массой m1 и длиной l приставлена к гладкой стене. Угол между стеной и лестницей равен а, модуль силы трения между лестницей и полом равен Fтp. На какую высоту может подняться человек массой m2 по лестнице, прежде чем она начнет скользить? Центр тяжести лестницы находится на расстоянии l/2 от ее конца.
 67736. Центр тяжести системы, состоящей из однородного массивного стержня с укрепленными на его концах грузами m1 = 5,5 кг и m2 = 1 кг, находится на расстоянии 1/5 длины стержня от более тяжелого груза. Найти массу стержня.
 67737. Два однородных шара, имеющих массы m1 и m2, а радиусы — соответственно R1 и R2, соединены однородным стержнем, масса которого m3, длина l. Центры шаров лежат на продолжении оси стержня. Найти центр тяжести этой системы.
 67738. Определить положение центра тяжести однородной круглой пластинки радиусом R, в которой вырезано квадратное отверстие так, как показано на рис. .
 67739. К вершине вертикальной мачты прикреплена антенна, действующая на нее в горизонтальном направлении с силой F1 = 500 Н, и оттяжка, которая действует на мачту с силой F2 = 1000 Н. Считая мачту невесомым твердым телом, найти угол между оттяжкой и вертикалью и силу, с которой мачта давит на землю.
 67740. Пуля массой m1 = 5 г, летящая горизонтально со скоростью v = 500 м/с, попадает в шар массой m2 = 0,5 кг, подвешенный на невесомой нерастяжимой нити, и застревает в нем. При какой предельной длине нити (расстояние от точки подвеса до центра шара) шар от удара пули сможет описать четверть окружности? Сопротивлением воздуха пренебречь.
 67741. Найти количество теплоты, которое выделяется при центральном абсолютно неупругом ударе двух шаров массами m1 и m2, движущихся навстречу друг другу со скоростями v1 и v2.
 67742. Происходит абсолютно упругий центральный удар двух шаров, массы которых m1 и m2, а скорости v1 и v2. Найти скорости шаров после удара.
 67743. Пуля массой m1 = 10 г, летящая горизонтально, абсолютно упруго соударяется с шаром массой m2 = 6 кг, подвешенным на легком стержне длиной l = 1 м, и отскакивает в противоположном направлении. В результате удара шар отклоняется от вертикали на угол а = 40°. Найти скорость пули до и после удара. Массой стержня пренебречь.
 67744. Лодка стоит неподвижно в стоячей воде. Человек, находящийся в лодке, переходит с носа на корму. На какое расстояние переместится лодка, если масса человека m1 = 60 кг, масса лодки m2 = 120 кг, длина лодки l = 3 м? Сопротивление воды не учитывать.
 67745. Поезд движется равномерно по прямолинейному горизонтальному участку железнодорожного пути. В одном из вагонов перетаскивают по полу груз на расстояние s1 = 6 м в направлении, противоположном направлению движения поезда, приложив силу F = 100 Н под углом а = 60° к перемещению груза. За время движения груза поезд проходит расстояние s2 = 240 м. Найти работу, которую совершает сила F относительно вагона; относительно Земли.
 67746. Пружина, прикрепленная одним концом к стене, растягивается под действием горизонтально направленной силы F так, что удлинение ее становится равным s. Какая работа совершается при этом?
 67747. Пружина жесткостью k = 1000 Н/м растянута на 6 см. Какую работу нужно совершить, чтобы растянуть эту пружину дополнительно еще на 8 см?
 67748. Столб длиной l и массой m, имеющий цилиндрическую форму, лежит на земле. Какую минимальную работу нужно совершить, чтобы поставить этот столб в вертикальное положение?
 67749. Тело свободно падает без начальной скорости с высоты Н. На какой высоте его кинетическая энергия будет вдвое больше потенциальной? За нулевой уровень потенциальной энергии принять поверхность Земли. Сопротивление воздуха не учитывать.
 67750. Тело брошено под углом а к горизонту со скоростью v0. Не учитывая сопротивления воздуха, определить скорость тела в тот момент, когда оно находится на высоте h над горизонтом.
 67751. На какой глубине в озере давление в 3 раза больше атмосферного давления р0 = 10^5 Па? Плотность воды р = 1*10^3 кг/м3.
 67752. Гладкую нижнюю грань площадью S = 36 см2 квадратной березовой пластинки толщиной h = 2 см натерли парафином, приставили ко дну сосуда и осторожно заполнили сосуд водой до высоты H = 12 см. Пластинка осталась лежать на дне. Какую наименьшую силу, направленную вертикально вверх, нужно приложить к середине одного из верхних ребер пластинки, чтобы она всплыла на поверхность воды? Плотность воды р1 = 1*10^3 кг/м3, плотность березы р2 = 0,65*10^3 кг/м3, атмосферное давление р0 = 10^5 Па. Считать, что ускорение свободного падения g = 10 м/с2.
 67753. Однородный сплошной стальной цилиндр плавает в ртути, при этом его основания горизонтальны. Поверх ртути наливают такой слой воды, что весь цилиндр находится в жидкости. Плотность воды р1, плотность ртути р2, плотность стали р3. Какая часть объема цилиндра находится в ртути?
 67754. Вес тела, погруженного в жидкость плотностью p1 равен Р1, а погруженного в жидкость плотностью р2 — P2. Найти плотность тела.
 67755. В аквариум, имеющий форму куба с ребром длиной а = 40 см, налита вода до высоты h = 30 см. Найти, какая сила действует на дно и какая — на одну боковую стенку аквариума. Атмосферное давление p0 = 10^5 Па. Плотность воды р = 1*10^3 кг/м3.
 67756. Однородный металлический шар, масса которого m = 1 кг, а плотность р1 = 2*10^3 кг/м3, погрузили в воду и отпустили. Найти кинетическую энергию шара в момент времени, когда он погрузился на глубину h = 10 м, а также архимедову силу, действующую на шар. Силой трения пренебречь. Плотность воды р2 = 1*10^3 кг/м3.
 67757. Тело массой m и плотностью р1 равномерно движется вертикально вниз в жидкости, плотность которой р2. Какое количество теплоты выделяется при прохождении телом пути длиной h?
 67758. Трубку в опыте Торричелли наклонили так, что она составляет с горизонтом угол а = 70°. Какова длина столба ртути в трубке, если атмосферное давление нормальное?
 67759. Какой длины трубку нужно было бы взять для измерения атмосферного давления в опыте Торричелли, если бы в ней и в сосуде была не ртуть, а вода? Атмосферное давление нормальное.
 67760. В сообщающиеся сосуды налили сначала ртуть, а затем в один из сосудов — масло, в результате чего уровень ртути во втором сосуде стал выше на h1 = 2 см, чем в первом. Высота столба масла h2 = 30 см. Плотность ртути р1 = 13,6*10^3 кг/м3. Определить плотность р2 масла.
 67761. В координатах р, V (рис. , а) изображен график зависимости давления р от объема V при переходе идеального газа из состояния 1 в состояние 2. Как изменялась температура в этом процессе?
 67762. График зависимости давления р идеального газа от его температуры Т в некотором процессе изображен на рисунке , а. Определить, сжимался или расширялся газ при переходе из состояния 1 в состояние 2.
 67763. Начертить графики изотермического расширения идеального газа данной массы в координатах p, V; T, V; р, р; р, Т, где р, V, Т и р — соответственно давление, объем, температура и плотность газа.
 67764. На рисунке изображены две изотермы для двух различных газов, имеющих одинаковые массу и температуру. Требуется сравнить молярные массы этих газов.
 67765. Закрытая с одного конца пробкой стеклянная трубка погружена вертикально открытым концом в сосуд с водой, при этом вода в трубке поднялась на высоту h (рис. ). Каково атмосферное давление, если длина трубки от пробки до открытого конца равна l, а глубина погружения трубки H? Плотность воды равна р. (Искривлением поверхности воды в трубке пренебречь.)
 67766. В баллоне содержится сжатый газ при температуре t1 = 27°С и давлении p1 = 4 МПа. Каково будет давление, если из баллона выпустить n = 0,4 массы газа, а температуру понизить до t2 = 17°С?
 67767. В вертикальном цилиндрическом сосуде, площадь дна которого S = 100 см2, содержится воздух при температуре t1 = 12°C. На высоте h1 = 60 см от дна находится поршень. На какой высоте от дна расположится поршень, если на него поставить груз массой m = 100 кг, а затем воздух в сосуде нагреть до температуры t2 = 27°С? Атмосферное давление ра = 10^5 Па. Поршень считать невесомым и трением его о стенки сосуда пренебречь.
 67768. Найти плотность смеси кислорода массой m1 = 64 г и азота массой m2 = 56 г при температуре t = 27°C и давлении р = 10^5 Па. Молярная масса кислорода М1 = 32*10^-3 кг/м3, азота М2 = 28*10^-3 кг/м3.
 67769. Какое количество теплоты необходимо затратить, чтобы кусок льда массой m = 20 г, взятый при температуре t1 = -15°С, превратить в пар при температуре t2 = 100°C? Удельная теплоемкость льда c1 = 2,1*10^3 Дж/(кг*К), воды с2 = 4,19*10^3 Дж/(кг*К), удельная теплота плавления льда L = 3,3*10^5 Дж/кг, удельная теплота парообразования воды r = 22,6*10^5 Дж/кг.
 67770. Расплавленный металл массой m1 при температуре плавления t1 вливают в сосуд с водой, масса которой m2, температура t2. Какая температура установится в сосуде, если его теплоемкость С? Испарение воды не учитывать.
 67771. Смешивают m1 = 300 г воды при температуре t1 = 10°С и m2 = 400 г льда при температуре t2 = -20°С. Определить установившуюся температуру Q смеси. Удельная теплоемкость воды c1 = 4,19*10^3 Дж/(кг*К), льда с2 = 2,1*10^3 Дж/(кг*К), удельная теплота плавления льда L = 330*10^3 Дж/кг.
 67772. Вечером температура воздуха была t1 = 15°С, относительная влажность ф = 80 %. Ночью температура воздуха понизилась до t2 = 8°С. Была ли роса? При температуре 15°С плотность насыщенного водяного пара р01 = 12,8 г/м3, а при 8°С - р02 = 8,3 г/м3.
 67773. Найти удельную теплоемкость гелия при постоянном давлении. Молярная масса гелия M = 4*10^-3 кг/моль.
 67774. Точечный заряд q1 находится вблизи большой квадратной равномерно заряженной пластины напротив ее центра. Расстояние r от заряда до пластины мало по сравнению со стороной а квадрата. Поверхностная плотность заряда на пластине равна s, диэлектрическая проницаемость окружающей среды равна е. Найти силу, действующую на заряд.
 67775. На одной прямой расположены три точечных заряда: -q1, +q2 и -q3. Определить напряженность поля в точках A и В (расстояния указаны на рисунке ). Система находится в вакууме (е = 1).
 67776. Два точечных заряда q1 > 0 и q2 < 0 расположены в воздухе на расстоянии r друг от друга. Найти напряженность поля, создаваемого этими зарядами в точке A, находящейся на расстоянии r1 от положительного заряда и r2 от отрицательного. Точка A не лежит на прямой, соединяющей заряды, r < r1 + r2.
 67777. Электрическое поле создано двумя бесконечными параллельными заряженными плоскостями с поверхностными плотностями заряда s1 = 0,5 мкКл/м2 и s2 = -0,3 мкКл/м2. Определить напряженность поля между плоскостями, а также слева от плоскости A и справа от плоскости В (рис. ). Плоскости находятся в воздухе (е = 1).
 67778. Найти напряженность и потенциал электрического поля в точке A (рис. ,а), расположенной посередине отрезка, соединяющего одинаковые одноименные заряды q. Как изменится результат, если заряды будут иметь противоположные знаки?
 67779. Плоский воздушный конденсатор, площадь каждой пластины которого равна S, а расстояние между ними d1, зарядили с помощью источника напряжения U, отключили от источника напряжения, а затем увеличили расстояние между пластинами до d2. Как изменится при этом энергия конденсатора? (Воздушным называют конденсатор, между пластинами которого находится воздух, e = 1.)
 67780. Плоский воздушный конденсатор, площадь каждой пластины которого S, а расстояние между ними d1, зарядили с помощью источника постоянного напряжения U. Как изменится энергия конденсатора, если, не отключая его от источника, увеличить расстояние между пластинами до d2?
 67781. Конденсатор емкостью С1 = 4 мкФ, заряженный до разности потенциалов U1 = 100 В, соединили одноименно заряженными обкладками с конденсатором емкостью С2 = 6 мкФ, заряженным до разности потенциалов U2 = 150 В. Найти разность потенциалов между обкладками конденсаторов после их соединения.
 67782. Два точечных положительных заряда q1 и q2 находятся в воздухе на расстоянии r1 друг от друга. Какую работу надо совершить, чтобы сблизить эти заряды до расстояния r2 (рис. )?
 67783. На двух металлических шарах имеются одинаковые положительные заряды. Соединим эти шары проволокой. Изменятся ли заряды шаров?
 67784. Амперметр предназначен для измерения силы тока до lа = 2 А и имеет сопротивление Rа = 0,2 Ом. Найти сопротивление Rш шунта, который надо подключить к этому амперметру, чтобы можно было измерить силу тока до l = 10 А. Как изменится при этом цена деления амперметра?
 67785. Вольтметр, рассчитанный на измерения напряжений до Uв = 2 В, имеет сопротивление Rв = 3 кОм. Найти сопротивление Rд добавочного резистора, который надо подключить к вольтметру, чтобы можно было измерять напряжение до U = 22 В.
 67786. Вольтметр, сопротивление которого Rв = 150 Ом присоединили к зажимам источника тока, внутреннее сопротивление которого r = 0,2 Ом. Какая относительная погрешность будет допущена, если показание вольтметра считать равным значению ЭДС?
 67787. Два элемента с ЭДС E1 = 1,25 В и E2 = 1,5 В, имеющие одинаковые внутренние сопротивления r1 = r2 = 0,4 Ом, соединены параллельно и замкнуты резистором, сопротивление которого R = 10 Ом. Найти силы токов в резисторе и в каждом элементе.
 67788. Аккумулятор, разряженный до E = 6 В, подключен для зарядки к выпрямителю с напряжением U = 10 В. Внутреннее сопротивление аккумулятора r = 1,5 Ом, сопротивление подводящих проводов R = 0,5 Ом. Какова сила тока при зарядке?
 67789. Два потребителя подключаются к источнику тока один раз последовательно, другой раз параллельно. Сравнить КПД источника в обоих случаях.
 67790. Источник тока с ЭДС E и внутренним сопротивлением r подключен к реостату, с помощью которого можно изменять силу тока в цепи. Выразить зависимость мощности Р1, выделяемой внешним участком цепи (полезной мощности), от силы тока l, построить график этой зависимости и определить, при каком условии полезная мощность будет максимальной.
 67791. В цепи, схема которой показана на рис. , емкость конденсатора С = 3 мкФ, ЭДС источника тока E = 6 В, его внутреннее сопротивление r = 2 Ом, сопротивления резисторов R1 и R2 — соответственно R1 = 4 Ом, R2 = 5 Ом. Определить заряд конденсатора.
 67792. Металлический стержень равномерно вращается вокруг одного из его концов в однородном магнитном поле в плоскости, перпендикулярной к силовым линиям поля (рис. ). Угловая скорость стержня w = 75 рад/с, его длина l = 0,4 м, магнитная индукция поля B = 0,1 Тл. Найти ЭДС индукции в стержне.
 67793. Плоский проводящий контур площадью S = 60 см2 находится в однородном магнитном поле с индукцией В = 0,4 Тл. Какой заряд пройдет по контуру, если его повернуть на угол: 90°; 180°? Сопротивление контура R = 2 Ом.
 67794. Прямоугольная проводящая рамка площадью S, содержащая N витков, равномерно вращается с угловой скоростью w в однородном магнитном поле, вектор магнитной индукции В которого направлен по вертикали (см. рис. ,а). В начальный момент времени угол а между нормалью n к плоскости рамки и вектором В равен нулю. Найти ЭДС индукции в момент времени t.
 67795. Материальная точка совершает колебания, при которых ее координата х изменяется со временем t по закону х = 0,06 cos 50пt, где все величины выражены в единицах СИ. Найти амплитуду, циклическую частоту, частоту, период и начальную фазу колебаний. Вычислить смещение точки при фазе п/3 рад и максимальное значение скорости колеблющейся точки.
 67796. Написать законы изменения напряжения u и силы тока i со временем t для электроплитки с сопротивлением R = 50 Ом, включенной в сеть переменного тока с частотой v = 50 Гц и напряжением U = 220 В.
 67797. На горизонтальной поверхности лежит шарик массой m, прикрепленный к стенке с помощью пружины, жесткость которой равна k. Шарик сместили из положения равновесия на расстояние х0 и толкнули влево, сообщив ему начальную скорость v0 (рис. ). Найти амплитуду колебаний. Массой пружины и трением пренебречь.
 67798. В колебательном контуре происходят свободные незатухающие электромагнитные колебания, период которых Т = 0,2 мс. Найти амплитуду колебаний заряда, если известно, что амплитуда колебаний силы тока lm = 31,4 мА.
 67799. Вдоль натянутого шнура распространяется поперечная волна. Разность фаз колебаний двух точек шнура, отстоящих друг от друга на расстоянии l = 0,2 м, равна dф = п/5 рад. Найти скорость волны, если известно, что частота колебаний v = 5 Гц.
 67800. Математический маятник длиной l = 0,8 м подвешен в кабине самолета, взлетающего с аэродрома под углом а = 30° к горизонту с ускорением а = 5 м/с2. Найти период колебаний маятника.