Earth curvature of space2 curvature of space1
Банк задач

Вход на сайт
Регистрация
Забыли пароль?
Статистика решений
Тип решенияКол-во
подробное решение60032
краткое решение7560
указания как решать1341
ответ (символьный)4704
ответ (численный)2335
нет ответа/решения3772
ВСЕГО79744

База задач ФизМатБанк

 46901. Распределение вероятностей значений некоторой величины х описывается функцией f = Ах (а - х) при 0 < х < а. Вне этого интервала f = 0. Здесь А и а — постоянные. Считая, что а задано, найти: а) наиболее вероятное значение х и соответствующее ему значение функции f; б) средние значения х и х2 в интервале (0, а).
 46902. Плотность вероятности распределения частиц по плоскости зависит от расстояния r до точки О как f(r) = А( 1 - r/а) м^-2 , если r < а, и f(r) = 0, если r > а. Здесь а задано, А — некоторая неизвестная постоянная. Найти: а) наиболее вероятное расстояние rвер частиц от точки О; б) постоянную А; в) среднее значение расстояния частиц от точки О.
 46903. То же условие, что и в предыдущей задаче, но f(r) = А(1-r2/а2).
 46904. Частица движется вдоль оси X по закону х = a cos wt. Считая вероятность нахождения частицы в интервале (-а, а) равной единице, найти зависимость от х плотности вероятности dP/dх, где dP — вероятность нахождения частицы в интервале (х, х + dx).
 46905. Поток электронов падает на экран с двумя щелями 1 и 2 (рис. ). В точке Р расположено входное отверстие счетчика, пусть ф1 — амплитуда волны, прошедшей через щель 1 и достигшей точки Р, а ф2 — то же, но в случае открытой щели 2. Отношение ф2/ф1 = h = 3,0. Если открыта только щель 1, то счетчик регистрирует N1 = 100 электронов в секунду. Сколько электронов ежесекундно будет регистрировать счетчик, если: а) открыта только щель 2; б) открыты обе щели и в точке Р наблюдается интерференционный максимум; в) то же, но в точке Р — минимум?
 46906. В момент t = 0 волновая функция некоторой частицы имеет вид ф = А ехр(-х2/4s2 + ikx). Изобразить примерный вид зависимостей: а) действительной части ф от х; б) |ф|2 от х.
 46907. Найти частное решение временного уравнения Шрёдингера для свободно движущейся частицы массы m.
 46908. Электрон находится в одномерной прямоугольной потенциальной яме с абсолютно непроницаемыми стенками. Найти ширину ямы, если разность энергии между уровнями с n1 = 2 и n2 = 3 составляет dЕ = 0,30 эВ.
 46909. Частица находится в основном состоянии в одномерной прямоугольной потенциальной яме ширины l с абсолютно непроницаемыми стенками (0 < x < l). Найти вероятность пребывания частицы в области l/3 < x < 2l/3.
 46910. Частица массы m находится в одномерной прямоугольной потенциальной яме с бесконечно высокими стенками. Плотность вероятности местонахождения частицы Р ~ (1 - cos wt), где а — заданная постоянная, х — расстояние от одного края ямы. Найти энергию частицы в этом стационарном состоянии.
 46911. Частица массы m находится в основном состоянии в одномерной прямоугольной потенциальной яме с бесконечно высокими стенками. При этом максимальное значение плотности вероятности местонахождения частицы в яме равно Pm. Найти ширину l ямы и энергию Е частицы в данном состоянии.
 46912. Частица массы m находится в основном состоянии в одномерной прямоугольной потенциальной яме с бесконечно высокими стенками. При этом пространственная производная волновой функции у края ямы |dф/dx| = a. Найти энергию Е частицы в данном состоянии.
 46913. Частица находится в одномерной прямоугольной потенциальной яме с бесконечно высокими стенками. Ширина ямы l. Найти нормированные волновые функции стационарных состояний частицы, взяв начало отсчета координаты x в середине ямы.
 46914. Электрон находится в одномерной прямоугольной потенциальной яме с бесконечно высокими стенками. Ширина ямы такова, что энергетические уровни расположены весьма плотно. Найти плотность уровней dN/dE, т. е. их число на единичный интервал энергии, в зависимости от Е. Вычислить dN/dE для Е = 1,0 эВ, если l = 1,0 см.
 46915. Частица массы т находится в двумерной прямоугольной потенциальной яме с абсолютно непроницаемыми стенками. Найти: а) возможные значения энергии частицы, если стороны ямы равны l1 и l2; б) значения энергии частицы на первых четырех уровнях, если яма квадратная со стороной l.
 46916. Частица находится в двумерной прямоугольной потенциальной яме с абсолютно непроницаемыми стенками (0< x < a, 0< у < b). Определить вероятность нахождения частицы с наименьшей энергией в области 0 < x < a/3.
 46917. Частица массы m находится в трехмерной кубической потенциальной яме с абсолютно непроницаемыми стенками. Ребро куба равно а. Найти: а) собственные значения энергии частицы; б) разность энергий 3-го и 4-го уровней; в) энергию 6-го уровня и соответствующее ему число состояний (кратность вырождения).
 46918. Показать с помощью уравнения Шрёдингера, что в точке, где потенциальная энергия частицы U(x) имеет конечный разрыв, волновая функция остается гладкой, т. е. ее первая производная по координате непрерывна.
 46919. Частица массы m находится в одномерном потенциальном поле U(x), вид которого показан на рис. , где U(0) = оо. Найти: а) уравнение, определяющее возможные значения энергии частицы в области Е < U0; привести это уравнение к виду sin kl = ±kl V(h2/2ml2Uo) , где k = V(2mE)/h. Показать с помощью графического решения данного уравнения, что возможные значения энергии частицы образуют дискретный спектр; б) минимальное значение величины l2U0, при котором появляется первый энергетический уровень в области Е < U0. При каком минимальном значении l2U0 появляется n-й уровень?
 46920. Воспользовавшись решением предыдущей задачи, определить вероятность нахождения частицы с энергией Е = U0/2 в области x > l, если l2U0 = (3п/4)2h2/m.
 46921. Частица массы m находится в одномерной потенциальной яме (рис. ) в основном состоянии. Найти энергию основного состояния, если на краях ямы ф-функция вдвое меньше, чем в середине ямы.
 46922. Найти возможные значения энергии частицы массы m, находящейся в сферически-симметричной потенциальной яме U(r) = 0 при r < r0 и U(r0) = оо, для случая, когда движение частицы описывается волновой функцией ф(r), зависящей только от радиуса r. Указание. При решении уравнения Шрёдингера воспользоваться подстановкой ф(r) = x(r)/r.
 46923. Имея в виду условия предыдущей задачи, найти: а) нормированные собственные функции частицы в состояниях, где ф(r) зависит только от r; б) для основного состояния частицы наиболее вероятное значение r вер, а также вероятность нахождения частицы в области r < r вер.
 46924. Частица массы m находится в сферически-симметричной потенциальной яме U(r) = 0 при m < m0 и U(r) = U0 при r > r0. а) Найти с помощью подстановки ф(r) = x(r)/r уравнение, определяющее собственные значения энергии Е частицы при Е < U0, когда движение описывается волновой функцией у(г), зависящей только от г. Привести это уравнение к виду sin kr0 = ±kr0 V(h2/2mrU0) , где k = V(2mE)/h. б) Определить значение величины r0U0, при котором появляется первый уровень.
 46925. Волновая функция частицы массы m для основного состояния в одномерном потенциальном поле U(x) = kx2/2 имеет вид ф(x) = Aexp(-ax2), где А и a —- некоторые постоянные. Найти с помощью уравнения Шрёдингера постоянную а и энергию Е частицы в этом состоянии.
 46926. Частица массы m находится в одномерном потенциальном поле U(x) в стационарном состоянии ф(х) = Aexp(-ax2), где А и а — постоянные (а > 0). Найти энергию Е частицы и вид U(x), если U(0) = 0.
 46927. Электрон атома водорода находится в состоянии, описываемом волновой функцией ф(r) = A exp(-r/r1), где А и r1 — некоторые постоянные. Найти значения: а) нормировочного коэффициента А; б) энергии Е электрона и г1 (с помощью уравнения Шрёдингера).
 46928. Определить энергию электрона атома водорода в состоянии, для которого ф-функция имеет вид ф(r) = A(1 +ar)exp(-ar), где A, a и а — некоторые постоянные.
 46929. В основном состоянии атома водорода волновая функция электрона ф(r) = Aexp(-r/r1), где А — постоянная, r1 — первый боровский радиус. Найти: а) наиболее вероятное расстояние rвер между электроном и ядром; б) вероятность нахождения электрона в области r < rвер.
 46930. Найти для электрона атома водорода в основном состоянии ф(r) = Aexp(-r/r1) отношение среднего расстояния от ядра <r> к наиболее вероятному rвер.
 46931. Электрон в атоме водорода находится в основном состоянии ф(r) = Ae^-ar, где А и а — постоянные. Определить вероятность нахождения этого электрона вне классических границ поля.
 46932. Состояние 1s-электрона атома водорода описывается волновой функцией ф(r) = Аехр(-r/r1), где А — нормировочный коэффициент, r1 — первый боровский радиус. Найти для этого состояния средние значения: а) модуля кулоновской силы, действующей на электрон; б) потенциальной энергии взаимодействия электрона с ядром.
 46933. Электрон атома водорода в 2р-состоянии описывается волновой функцией, радиальная часть которой R(r) ~ r ехр(-r/2r1), где r1 — первый боровский радиус. Найти в этом состоянии: а) наиболее вероятное расстояние rвер электрона от ядра; б) среднее расстояние <r> между электроном и ядром.
 46934. Частица находится в сферически-симметричном потенциальном поле в стационарном состоянии, для которого ф(r) = (2пa)^-1/2 r^-1 е^-r/а, где а — постоянная, r — расстояние от центра поля. Найти среднее значение <r>.
 46935. Частица массы m находится в одномерном потенциальном поле U(x) = kx^2, где k — положительная постоянная. Найти среднее значение <U> частицы в состоянии ф = Аехр(-ax^2), где А и a — неизвестные постоянные.
 46936. Частица в момент t = 0 находится в состоянии ф = А ехр(-х2/а2 +ikx)> где A и а — постоянные. Найти: а) <х>; б) <pх> — среднее значение проекции импульса.
 46937. Найти средний электростатический потенциал, создаваемый электроном в центре атома водорода, если электрон находится в основном состоянии ф(r) = Aexp(-r/r1) , где A — постоянная, r1 — первый боровский радиус.
 46938. Частицы с массой m и энергией Е движутся слева на потенциальный барьер (рис. ). Найти: а) коэффициент отражения R этого барьера при Е > U0; б) эффективную глубину проникновения частиц в область x > 0 при Е < U0, т. е. расстояние от границы барьера до точки, где плотность вероятности нахождения частицы уменьшается в е раз.
 46939. Воспользовавшись формулой (5.3е), найти для электрона с энергией Е вероятность D прохождения сквозь потенциальный барьер, ширина которого l и высота U0 (рис. ).
 46940. То же, что и в предыдущей задаче, но барьер имеет вид, показанный на рис .
 46941. Найти с помощью формулы (5.3е) вероятность прохождения частицы с массой m и энергией Е сквозь потенциальный барьер (рис. ), где U(x) = U0(1 - x2/l2).
 46942. Энергия связи валентного электрона атома лития в состояниях 2S и 2Р равна 5,39 и 3,54 эВ. Вычислить ридберговские поправки для S- и Р-термов этого атома.
 46943. Найти ридберговскую поправку для 3Р-терма атома натрия, первый потенциал возбуждения которого 2,10 В, а энергия связи валентного электрона в основном состоянии 3S равна 5,14 эВ.
 46944. Найти энергию связи валентного электрона в основном состоянии атома лития, если известно, что длина волны головной линии резкой серии L1 = 813 нм и длина волны коротковолновой границы этой серии L2 = 350 нм.
 46945. Определить длины волн спектральных линий, возникающих при переходе возбужденных атомов лития из состояния 3S в основное состояние 2S. Ридберговские поправки для S- и Р-термов равны -0,41 и -0,04.
 46946. Длины волн компонент желтого дублета резонансной линии натрия, обусловленной переходом 3P -> 3S, равны 589,00 и 589,56 нм. Найти величину расщепления 3P-терма в эВ.
 46947. Головная линия резкой серии атомарного цезия представляет собой дублет с длинами волн 1358,8 и 1469,5 нм. Найти интервалы в частотах (w, с-1) между компонентами других линий этой серии.
 46948. Выписать спектральные обозначения термов атома водорода, электрон которого находится в состоянии с главным квантовым числом n = 3.
 46949. Сколько и какие значения квантового числа J может иметь атом в состоянии с квантовыми числами S и L, равными соответственно: а) 2 и 3; б) 3 и 3; в) 5/2 и 2?
 46950. Найти возможные значения полных механических моментов атомов, находящихся в состояниях 4Р и 5D.
 46951. Найти максимально возможный полный механический момент и соответствующее спектральное обозначение терма атома: а) натрия, валентный электрон которого имеет главное квантовое число n = 4; б) с электронной конфигурацией 1s2 2p 3d.
 46952. Известно, что в F- и D-состояниях число возможных значений квантового числа J одинаково и равно пяти. Найти спиновый механический момент в этих состояниях.
 46953. Атом находится в состоянии, мультиплетность которого равна трем, а полный механический момент hV20. Каким может быть соответствующее квантовое число L?
 46954. Определить максимально возможный орбитальный механический момент атома в состоянии, мультиплетность которого равна пяти и кратность вырождения по J — семи. Написать спектральное обозначение такого терма.
 46955. Найти возможные мультиплетности x термов типа: a)*D2; б)*Р3/2; в)*FV
 46956. Некоторый атом, кроме заполненных оболочек, имеет три электрона (s, р и d) и находится в состоянии с максимально возможным для этой конфигурации полным механическим моментом. Найти в соответствующей векторной модели атома угол между спиновым и полным механическими моментами данного атома.
 46957. Выписать спектральные символы термов двухэлектронной системы, состоящей из одного р-электрона и одного d-электрона.
 46958. Система состоит из d-электрона и атома в состоянии 2Р3/2. Найти возможные спектральные термы этой системы.
 46959. Какие переходы запрещены правилами отбора: 2D3/2 -> 2P1/2, 3P1 -> 2S1/2, 3F3 -> 3P2, 4F7/2 -> 4D5/2?
 46960. Определить суммарную кратность вырождения 3D-co-стояния атома лития. Каков физический смысл этой величины?
 46961. Найти кратность вырождения состояний 2Р, 3D и 4F с максимально возможными полными механическими моментами.
 46962. Написать спектральное обозначение терма, кратность вырождения которого равна семи, а квантовые числа L и S связаны соотношением L = 3S.
 46963. У атома какого элемента заполнены К-, L- и М-оболочки, 4s-подоболочка и наполовину 4р-подоболочка?
 46964. Используя правила Хунда, найти основной терм атома, незаполненная подоболочка которого содержит: а) три р-электрона; б) четыре р-электрона.
 46965. Найти с помощью правил Хунда полный механический момент атома в основном состоянии, если его незаполненная подоболочка содержит: а) три d-электрона; б) семь d-электронов.
 46966. Воспользовавшись правилами Хунда, найти число электронов в единственной незаполненной подоболочке атома, основной терм которого: а) 3F2; б) 2Р3/2; в) 6S5/2.
 46967. Написать с помощью правил Хунда спектральный символ основного терма атома, единственная незаполненная подоболочка которого заполнена: а) на 1/3 и S = 1; б) на 70% и S = 3/2.
 46968. Единственная незаполненная подоболочка некоторого атома содержит три электрона, причем основной терм атома имеет L = 3. Найти с помощью правил Хунда спектральный символ основного состояния данного атома.
 46969. Вычислить среднее время жизни возбужденных атомов, если известно, что интенсивность спектральной линии, обусловленной переходом в основное состояние, убывает в h = 25 раз на расстоянии l = 2,5 мм вдоль пучка атомов, скорость которых v = 600 м/с.
 46970. Разреженные пары ртути, атомы которой практически все находятся в основном состоянии, осветили резонансной линией ртутной лампы с длиной волны L = 253,65 нм. При этом мощность испускания данной линии парами ртути оказалась Р = 35 мВт. Найти число атомов в состоянии резонансного возбуждения, среднее время жизни которого т = 0,15 мкс.
 46971. Найти длину волны Kа-линии меди (Z = 29), если известно, что длина волны Kа-линии железа (Z = 26) равна 193 пм.
 46972. Вычислить с помощью закона Мозли: а) длину волны Ka-линии алюминия и кобальта; б) разность энергий связи K- и L-электронов ванадия.
 46973. Сколько элементов содержится в ряду между теми, у которых длины волн Кa-линий равны 250 и 179 пм?
 46974. Найти напряжение на рентгеновской трубке с никелевым антикатодом, если разность длин волн Ka-линии и коротковолновой границы сплошного рентгеновского спектра равна 84 пм.
 46975. При некотором напряжении на рентгеновской трубке с алюминиевым антикатодом длина волны коротковолновой границы сплошного рентгеновского спектра равна 0,50 нм. Будет ли наблюдаться при этом K-серия характеристического спектра, потенциал возбуждения которой равен 1,56 кВ?
 46976. При увеличении напряжения на рентгеновской трубке от U1 = 10 кВ до U2 = 20 кВ интервал длин волн между Ka-линией и коротковолновой границей сплошного рентгеновского спектра увеличился в n = 3,0 раза. Определить порядковый номер элемента антикатода этой трубки, имея в виду, что данный элемент является легким.
 46977. У какого легкого элемента в спектре поглощения разность частот K- и L-краев поглощения рентгеновских лучей составляет dw = 6,85*10^18 с-1?
 46978. Вычислить энергию связи K-электрона ванадия, для которого длина волны L-края поглощения XL = 2,4 нм.
 46979. Найти энергию связи L-электрона титана, если разность длин волн головной линии K-серии и ее коротковолновой границы dL = 26 пм.
 46980. У некоторого легкого атома длины волн Ка- и Kb-линий равны 275 и 251 пм. Что это за атом? Какова длина волны головной линии его L-серии?
 46981. Найти кинетическую энергию и скорость фотоэлектронов, вырываемых Ka-излучением цинка с K-оболочки атомов железа.
 46982. Вычислить фактор Ланде для атомов: а) в S-состояниях; б) в синглетных состояниях.
 46983. Вычислить фактор Ланде для следующих термов: a) 6F1/2; б) 4D1/2; в) 5F2; г) 5Р1; д) 3Р0.
 46984. Вычислить магнитный момент атома: а) в 1F-состоянии; б) в состоянии 2D3/2; в) в состоянии с S = 1, L = 2 и фактором Ланде g = 4/3.
 46985. Определить спиновый механический момент атома в состоянии D2, если максимальное значение проекции магнитного момента в этом состоянии равно четырем магнетонам Бора.
 46986. Найти с помощью правил Хунда магнитный момент основного состояния атома, незамкнутая подоболочка которого заполнена ровно наполовину пятью электронами.
 46987. Валентный электрон атома натрия находится в состоянии с главным квантовым числом n = 3, имея при этом максимально возможный полный механический момент. Каков его магнитный момент в этом состоянии?
 46988. Возбужденный атом имеет электронную конфигурацию ls2 2s2 2p 3d и находится при этом в состоянии с максимально возможным полным механическим моментом. Найти магнитный момент атома в этом состоянии.
 46989. Найти полный механический момент атома в состоянии с S = 3/2 и L = 2, если известно, что магнитный момент его равен нулю.
 46990. Некоторый атом находится в состоянии, для которого S = 2, полный механический момент М = hV2, а магнитный момент равен нулю. Написать спектральный символ соответствующего терма.
 46991. Атом в состоянии 2P3/2 находится в слабом магнитном поле с индукцией В = 1,0 кГс. Найти с точки зрения векторной модели угловую скорость прецессии полного механического момента этого атома.
 46992. Атом в состоянии 2Р1/2 находится на оси витка радиуса r = 5,0 см с током I = 10 А. Расстояние между атомом и центром витка равно радиусу последнего. Найти силу, действующую на атом.
 46993. Атом водорода в нормальном состоянии находится на расстоянии r = 2,5 см от длинного прямого проводника с током I = 10 А. Найти силу, действующую на атом.
 46994. Узкий пучок атомов ванадия в основном состоянии 4F3/2 пропускают по методу Штерна и Герлаха через поперечное резко неоднородное магнитное поле, протяженность которого l1 = 5,0 см. Расщепление пучка наблюдают на экране, отстоящем от магнита на расстояние l2 = 15 см. Кинетическая энергия атомов K = 22 мэВ. При каком значении градиента индукции В магнитного поля расстояние между крайними компонентами расщепленного пучка на экране будет составлять x = 2,0 мм?
 46995. На сколько подуровней расщепится в слабом магнитном поле терм: а) 3Р0; б) 2F5/2; в) 4D1/2?
 46996. Атом находится в слабом магнитном поле с индукцией В = 2,50 кГс. Найти полную величину расщепления в электронвольтах следующих термов: a) 1D; б) 3F4.
 46997. Какой эффект Зеемана (простой, сложный) обнаруживают в слабом магнитном поле спектральные линии, обусловленные следующими переходами: а) 1Р -> 1S; б) 2D5/2 -> 2Р3/2; в) 3D1 -> 3Р0; г) 5I5 -> 5H4?
 46998. Определить спектральный символ синглетного терма атома, если полная ширина расщепления этого терма в слабом магнитном поле, индукция которого В = 3,0 кГс, составляет dЕ = 104 мкэВ.
 46999. Известно, что спектральная линия L = 612 нм обусловлена переходом между синглетными термами атома. Вычислить интервал dL между крайними компонентами этой линии в магнитном поле с индукцией В = 10,0 кГс.
 47000. Найти минимальное значение индукции В магнитного поля, при котором спектральным прибором с разрешающей способностью L/dL = 1,0*10^5 можно разрешить компоненты спектральной линии L = 536 нм, обусловленной переходом между синглетными термами. Наблюдение ведут перпендикулярно магнитному полю.
www.forex.ru форекс торговля, кредитное