Earth curvature of space2 curvature of space1
Банк задач

Вход на сайт
Регистрация
Забыли пароль?
Статистика решений
Тип решенияКол-во
подробное решение57480
краткое решение7556
указания как решать1341
ответ (символьный)4703
ответ (численный)2335
нет ответа/решения3776
ВСЕГО77191

База задач ФизМатБанк

 39201. Найти угол отклонения узкого светового пучка от его первоначального направления распространения при переходе из стекла в воздух, если угол падения a1 = 30°. То же — при угле падения а2 = 45°. Показатель преломления стекла n = 1,5. Найти скорость света в этом стекле.
 39202. Пучок параллельных лучей ширины b = 20 см проходит в стекле под углом ф = 60° к его плоской грани. Найти ширину пучка после перехода его в воздух через эту грань. Показатель преломления стекла n = 1,8.
 39203. Светящаяся точка S, находящаяся в среде с показателем преломления n1, рассматривается из среды с показателем преломления n2 > n1 под небольшим углом b к нормали, проведенной к границе раздела сред. Каково будет кажущееся расстояние от точки S до границы раздела сред, если истинное расстояние равно h?
 39204. Узкий пучок света, падающий на плоскопараллельную пластинку толщины d = 20 cм с показателем преломления n = 1,5 под углом а = 60° к нормали, частично отражается от ее первой грани, а частично преломляется. Преломленный пучок света доходит до второй грани, здесь опять частично преломляется и выходит из пластинки, а частично отражается и идет к верхней грани; здесь, вновь преломляясь, выходит с первой грани пластинки (рис. ). Найти смещение светового пучка, вышедшего со второй грани пластинки, и расстояние BD между пучками, отраженными от обеих граней.
 39205. Две прозрачные плоскопараллельные пластинки сложены своими гранями. Пластинка толщины d1 = 4 см имеет показатель преломления n1 = 2,0; пластинка толщины d2 = 6 cм имеет показатель преломления n2 = 1,5. На первую пластинку под углом а = 37° к нормали падает узкий световой пучок. Найти боковое смещение светового пучка по выходе в воздушное пространство со стороны второй пластинки.
 39206. Монохроматический луч падает на вертикальную грань прозрачной призмы, у которой поперечное сечение—прямоугольный треугольник. Показатель преломления материала призмы n = 1,6. Преломляющий угол призмы ф = 30°. Найти угол отклонения луча, вышедшего из призмы, от его первоначального направления, если луч падает перпендикулярно к грани.
 39207. Монохроматический луч падает на вертикальную грань прозрачной призмы, у которой поперечное сечение—прямоугольный треугольник. Преломляющий угол призмы ф = 30°. Найти угол отклонения луча, вышедшего из призмы, от его первоначального направления, если угол падения луча на вертикальную стенку призмы a = 30°, а показатель преломления материала призмы n = 1,5. Решить задачу для случаев, когда луч направлен: а) снизу вверх; б) сверху вниз.
 39208. Предмет высоты h = 40 см находится на расстоянии d = 1 м от вертикально расположенной рассеивающей линзы с фокусным расстоянием F = - 25 см. Где находится изображение предмета? Найти высоту изображения и оптическую силу линзы.
 39209. Светящийся предмет находится на расстоянии l = 420 см от экрана. Где надо поместить собирающую линзу, чтобы получить 20-кратное увеличение предмета? Найти оптическую силу линзы.
 39210. Собирающая линза дает изображение предмета, увеличенное в пять раз. Экран придвинули к предмету на dd = 0,50 м; затем переместили линзу так, что предмет на экране получился в натуральную величину. Найти оптическую силу линзы и первоначальное расстояние между предметом и экраном.
 39211. Между светящимся предметом и экраном, расположенными на расстоянии L = 120 см друг от друга, перемещается собирающая линза. При некотором положении линзы на экране получается отчетливое увеличенное изображение предмета. Когда линза перемещается на l = 90 см, то на экране получается отчетливое уменьшенное изображение предмета. Найти фокусное расстояние линзы.
 39212. Найти наименьшее возможное расстояние между светящимся предметом и его действительным изображением в собирающей линзе с фокусным расстоянием F.
 39213. Выпукло-вогнутая рассеивающая линза с радиусами кривизны поверхностей R1 = 80 см и R2 = 16 см сделана из стекла с показателем преломления n = 1,8. Найти оптическую силу линзы.
 39214. Оптическая система состоит из прилегающих одна к другой собирающей и рассеивающей линз, главные оптические оси которых совпадают. Фокусные расстояния собирающей и рассеивающей линз F1 = 50 см и F2 = - 0,80 м. Найти положение изображения светящейся точки, которая находится на оптической оси системы на расстоянии d = 80 см от оптического центра. Какое это будет изображение?
 39215. Оптическая система состоит из двух собирающих линз, главные оптические оси которых совпадают. Фокусное расстояние первой линзы F1 = 10 см, второй — F2 = 8 см. Расстояние между линзами l = 50 см. Перед первой линзой на расстоянии d1 = 15 cм от нее находится светящийся предмет. Найти число изображений, их положение и характер. Решение проверить построением.
 39216. Оптическая система состоит из собирающей линзы и небольшого вогнутого зеркала, расположенного на расстоянии l = 75 см от нее; их главные оси совпадают. Фокусное расстояние линзы F1 = 20 см, радиус кривизны зеркала R2 = 50 см. Перед линзой на расстоянии d1 = 30 см от нее находится светящийся предмет. Найти число изображений, их положение и характер. Решение проверить построением.
 39217. Плоская поверхность плоско-выпуклой линзы с фокусным расстоянием F = 60 см посеребрена. На расстоянии d1 = 20 см от линзы со стороны выпуклой поверхности расположен светящийся предмет. Найти число изображений, их положение и характер. Решение проверить построением.
 39218. Экран освещается источником света, расположенным в фокусе линзы, имеющей оптическую силу D = 0,5 дптр. Линза находится между источником света и экраном (рис. ). Найти освещенность в центре экрана, если сила света источника l = 100 кд. Поглощением света в линзе пренебречь.
 39219. Освещенность экрана солнечными лучами, падающими нормально к экрану, Е0 = 103 лк; перед экраном на расстоянии от него l = 60 см помещают линзу с оптической силой D = 5 дптр. Найти среднюю освещенность экрана в тени от линзы и в светлом кольце вокруг тени (рис. ). Поглощением света в линзе пренебречь.
 39220. Источник света находится на расстоянии L = 1,5 м от экрана. Сила света источника I = 90 кд. Посередине между ними расположена собирающая линза с фокусным расстоянием F = 30 см (рис. ). Найти освещенность в центре экрана. Потерями света в линзе пренебречь.
 39221. Точечный источник света, имеющий силу света I = 100 кд, помещен в фокусе прожектора с радиусом кривизны зеркала R = 2 м (рис. ). На расстоянии l = 5 м от источника света расположен экран Э, плоскость которого перпендикулярна к оптической оси прожектора. Найти освещенность экрана в точке, лежащей на оптической оси прожектора, если потери световой энергии при отражении от зеркала равны 25% от всей падающей на зеркало световой энергии (а = 0,25).
 39222. Точечный источник света, имеющий силу света I = 100 кд, помещен на расстоянии d = 1,5 м от прожектора с радиусом кривизны зеркала R = 2 м (рис. ). На расстоянии l = 5 м от источника света расположен экран Э, плоскость которого перпендикулярна к оптической оси прожектора. Найти освещенность экрана в точке, лежащей на оптической оси прожектора, если потери световой энергии при отражении от зеркала равны 25% от всей падающей на зеркало световой энергии (a = 0,25). Решить предыдущую задачу при условии, что источник света находится на расстоянии d = 1,5 м от прожектора.
 39223. Точечный источник света, имеющий силу света I = 100 кд, помещен на расстоянии d = 0,5 м от прожектора с радиусом кривизны зеркала R = 2 м (рис. ). На расстоянии l = 5 м от источника света расположен экран Э, плоскость которого перпендикулярна к оптической оси прожектора. Найти освещенность экрана в точке, лежащей на оптической оси прожектора, если потери световой энергии при отражении от зеркала равны 25% от всей падающей на зеркало световой энергии (a = 0,25). Решить предыдущую задачу при условии, что источник света находится на расстоянии d = 1,5 м от прожектора.
 39224. Фотоаппарат имеет объектив с главным фокусным расстоянием F = 5 см и фотопленку с размером кадра 6 x 8 см2. Требуется снять чертеж, имеющий размеры 60 x 60 см2. На каком расстоянии от чертежа надо поместить объектив фотоаппарата, чтобы снимок получился возможно большим? На каком расстоянии от объектива должна устанавливаться пленка?
 39225. В двояковыпуклой линзе первоначальное изображение было в k1 = 4 раза больше предмета. Затем линзу отодвинули от предмета на расстояние l = 0,4 см, после чего изображение стало в k2 = 5 раз больше предмета. Найти оптическую силу линзы. Оба изображения мнимые и находятся на расстоянии наилучшего зрения от линзы.
 39226. Расстояние наилучшего зрения глаза L = 100 см. Найти оптическую силу очков, восполняющих недостаток зрения этого глаза.
 39227. Красная граница фотоэффекта для цезия L0 = 653 нм. Найти скорость фотоэлектронов, выбитых при облучении цезия фиолетовым светом. Длина волны фиолетового света L = 400 нм. Масса электрона m = 9,1*10^-31 кг.
 39228. Написать недостающие обозначения в следующих ядерных реакциях: 19|9F + 1|1H ---> 16|8O + ?, 55|25Mn + 1|1Н --> 55|26Fe +?, 25|12Mg + ? ---> 22|11Na + 4|2He.
 39229. Линейные размеры молекулы O2 0,3 нм, длина волны оранжевой линии криптона 605,8 нм, радиус Земли 6400 км, расстояние Земля - Луна 384 тыс. км, расстояние до а-Центавра 4,2 св. года. Указать метод измерения этих величин и физические ограничения на точность измерения.
 39230. Скорость пули на начальном участке 715 м/с, скорость электрона в кинескопе 4*10^7 м/с, скорость света в вакууме 3*10^8 м/с Указать способы измерения этих скоростей и физические ограничения на точность измерения.
 39231. Вычислить расстояние до звезды а-Центавра по ее годичному параллаксу п = 0,756" (в парсеках, световых годах и метрах).
 39232. Оценить радиус орбиты Венеры, если ее наибольшее угловое удаление от Солнца составляет 46°.
 39233. Определить максимальное время наблюдения Венеры после захода Солнца. Радиус орбиты Венеры 0,72 а. е.
 39234. Оценить максимальную продолжительность наблюдения полного лунного затмения. Видимый с Земли угловой размер Луны и Солнца имеет одинаковую величину 10^-2 рад.
 39235. Оценить минимальную скорость движения лунной тени по поверхности Земли при солнечном затмении. Скорость Луны 1 км/с.
 39236. Как должна быть сориентирована спутниковая антенна НГУ для приема сигнала с геостационарного спутника? Найти максимальный угол наклона антенны к горизонту. Широта Новосибирска 55°.
 39237. Нарисуйте траекторию конца тени от вертикально стоящей палочки в солнечный день 22 июня в Новосибирске. Оцените долготу дня. Проследите эволюцию траектории со временем. Что будет на других широтах?
 39238. Зависимость скоростей двух автомобилей от времени задается следующими выражениями: V1 = ######; V2 = #####. Найти зависимость ускорения и пройденного пути от времени. Нарисовать синхронные графики ускорения, скорости и пройденного пути.
 39239. График зависимости скорости объекта от времени имеет вид половинки окружности, занимающей на оси времени 20 с (в системе СИ), начальная скорость равна нулю. Какой путь пройден объектом за время движения? Нарисовать зависимость ускорения и пройденного пути от времени. Каким будет результат для половинки эллипса высотой 5 м?
 39240. Нарисовать синхронные графики зависимости от времени координаты x, скорости х*и ускорения центра тяжести упругого шарика, подпрыгивающего в поле тяжести над упругой плитой без потерь энергии. Рассмотреть случай, когда деформации шарика существенны. За какое время шарик остановится, если при каждом ударе будет теряться 1 % энергии? Изобразите это движение на плоскости х, х*.
 39241. Упругий шарик подпрыгивает в поле тяжести над горизонтальной плитой, которая движется вниз с постоянной скоростью. Нарисовать синхронные графики зависимости от времени смещения х шарика из начального положения, скорости х*и ускорения х**в лабораторной системе отсчета. Изобразите это движение на плоскости х, х*.
 39242. Точка описывает фигуру Лиссажу по уравнениям x = cos (t/т), y = 2cos (2t/т), где x, у заданы в м, t - в с, т = 1 с. Определить скорость и ускорение точки, когда она пересекает ось OY. Нарисовать траекторию.
 39243. Движение точки выражается уравнениями x = cos(t/т), у = 2sin(2t/т), где х, у заданы в м, t - в с, т = 1 с. Определить зависимость проекций силы, действующей на точку, от координаты. Масса точки 10^-3 кг.
 39244. Нарисовать зависимость от времени угла поворота, угловой скорости и углового ускорения антенны радиолокатора, следящего за самолетом, летящим по прямой с постоянной скоростью.
 39245. Зависимость скорости точки массой m от времени имеет вид: Vx = V0sin(wt + ф) + V1, Vy = 0, Vz = 0. Нарисовать зависимость пути, пройденного точкой, от времени. Определить силу, действующую на точку.
 39246. Напряженность однородного электрического поля изменяется по закону E = E0 cos (wt + ф). Нарисуйте траекторию движения электрона в таком поле, если в начальный момент t = 0 скорость движения электрона V0 была направлена перпендикулярно полю.
 39247. Исследовать зависимость между напряжением U(t) на пластинах осциллографа и смещением пятна на экране y(t). Как изобразится на экране прямоугольный импульс напряжения? Найти уравнение кривой, на которой в момент времени t0 находятся электроны луча.
 39248. На вертикальные пластины осциллографа подается напряжение U1(t), на горизонтальные - U2(t). Чувствительность осциллографа а1 и а2 В/м соответственно. Нарисовать траекторию светового пятна на экране, найти его скорость и ускорение в различные моменты времени для двух случаев: 1) U1 = at cos wt, U2 = at sin wt; 2) U1 = a cos wt, U2 = b sin (wt + ф).
 39249. Точка движется по закону x = a*ch(yt), y = a*sh(yt), где а, у - константы. Найти уравнение траектории в декартовых и полярных координатах, выразить скорость и ускорение точки как функцию ее радиус-вектора r = |/x2 + у2.
 39250. Нарисовать траекторию точки, движущейся по закону r = b/t, ф = yt (b > 0). Найти закон движения и уравнение траектории в декартовых координатах.
 39251. Получить выражение для компонент радиус-вектора, скорости и ускорения точки в цилиндрической системе координат.
 39252. Точка движется по закону р = ае^kt, ф = kt. Найти траекторию, скорость, ускорение и радиус кривизны траектории в зависимости от радиус-вектора точки.
 39253. Точка движется по закону х = 2t, у = t2 (х, у - в м, t - в с). Определить радиус кривизны траектории в начале движения и через 2 с.
 39254. Установить связь между декартовыми, цилиндрическими и сферическими координатами. Записать выражения для дифференциала длины дуги, площади, объема и, используя их, вычислить прямым интегрированием длину окружности, площадь сферы, объем цилиндра, конуса, шара.
 39255. Четыре собаки преследуют друг друга, так что скорость догоняющей собаки V всегда направлена на убегающую собаку (см. рисунок). Через какое время собаки догонят друг друга, если сначала они находились в углах квадрата со стороной а? Какова траектория собак? Какими будут время и траектория для N собак?
 39256. Корабль движется равномерно, сохраняя постоянный угол пеленга на маяк (угол между вектором скорости и направлением на маяк). Нарисовать возможные траектории корабля.
 39257. Заяц бежит по прямой линии со скоростью u. В начальный момент времени из положения, показанного на рисунке, его начинает преследовать собака со скоростью V. В ходе погони собака всегда бежит в направлении зайца. Через какое время собака настигнет зайца? Начальное расстояние между ними L.
 39258. Имеется однородный шнур из взрывчатого вещества. Скорость распространения реакции взрыва вдоль шнура V, скорость распространения взрывной волны по воздуху с. Найти форму линии, по которой надо расположить шнур, чтобы волна от всех точек шнура пришла в заданную точку одновременно. Можно ли сделать то же самое для поверхности со взрывчаткой и получить сходящуюся сферическую волну с большой концентрацией энергии?
 39259. Сферические координаты векторов r1 = (r1, Q1, ф1 ) и r2 = (r2, Q2, ф2). Определить угол между векторами r1 и r2.
 39260. Найдите кратчайшее расстояние при полете из Новосибирска (ф = 83° вост. долготы, Q = 55° с. ш.) до Рио-де-Жанейро (ф = 44° зап. долготы, Q = 22° ю. ш.).
 39261. Выразить орты сферической и цилиндрической систем координат через орты декартовой системы координат (и наоборот).
 39262. Футболист находится в 20 м от прямолинейной траектории мяча. Скорость мяча 10 м/с, футболиста 8 м/с. При каких начальных положениях мяча футболист сможет догнать его? В каких точках траектории мяча возможен перехват, если вначале мяч был в 25 м от футболиста?
 39263. Для двух кораблей, движущихся неизменными пересекающимися курсами, выразить расстояние наибольшего сближения и время до сближения через векторы скоростей и начальных положений.
 39264. Определить векторы скоростей и ускорений траков гусениц трактора, который движется по прямой дороге с ускорением а при скорости V (в системе дороги и в системе трактора).
 39265. Самолет облетел стороны треугольника с длинами А, В и С за время t1, t2, t3 соответственно. Найти скорость ветра и самолета в случае, когда скорость ветра параллельна плоскости треугольника.
 39266. Снаряд, летящий на большой высоте со скоростью V, разрывается на осколки, которые в системе снаряда разлетаются в разные стороны с одинаковыми начальными скоростями u. Какое положение в пространстве они займут в момент времени t? Опишите движение осколков в системе координат, связанной с одним осколком.
 39267. Как изменяются импульс и кинетическая энергия системы частиц при преобразованиях Галилея? В какой системе отсчета кинетическая энергия частиц минимальна?
 39268. Какова кинетическая энергия гусеницы трактора в системе дороги и в системе трактора, если скорость трактора V?
 39269. Определите скорость поезда, если при приближении к неподвижному наблюдателю гудок поезда имел частоту в а раз большую, чем при удалении от наблюдателя.
 39270. Машинисты двух сближающихся поездов сигнализируют друг другу гудками. Определите скорость поездов, если частоты принимаемых машинистами сигналов превышают «собственную» частоту гудка в а и b раз соответственно. Сигнальные устройства локомотивов одинаковы.
 39271. Какова угловая скорость вращения Луны с точки зрения наблюдателя, находящегося на поверхности Земли?
 39272. Найти траекторию и закон движения точки на циферблате в системе координат, связанной с концом минутной стрелки часов.
 39273. Найти траекторию и закон движения конца часовой стрелки часов в системе координат, связанной с концом минутной стрелки.
 39274. Найти траекторию и закон движения конца минутной стрелки часов в системе координат, связанной с концом часовой стрелки.
 39275. Нарисовать траекторию Марса в системе координат, связанной с центром Земли, начиная с противостояния. Период между двумя последовательными противостояниями Марса 780 земных суток. Расстояние Земля - Марс меняется от 0,55*10^8 км до 4*10^8 км.
 39276. Нарисовать траекторию Луны в системе координат, неподвижной относительно центра Солнца. Оценить диапазон ускорений центра Луны в этой системе координат.
 39277. Могут ли на траектории спутника Земли в системе, связанной с Солнцем, появиться участки с нулевой кривизной?
 39278. Жесткий стержень АВ движется в плоскости XOY, опираясь на окружность, центр которой находится в начале координат (см. рисунок). Найти угловую скорость стержня, если его конец В движется вдоль оси х с постоянной скоростью V.
 39279. Стержень OA (см. рисунок) равномерно вращается с угловой скоростью w вокруг точки О, расположенной на окружности радиуса R. Определить скорость и ускорение колечка m, надетого на стержень и окружность.
 39280. Между двумя зубчатыми рейками зажата шестеренка радиусом R = 0,5 м. Ускорения реек а1 = 1,5 м/с2 и а2 = 2,5 м/с2 (см. рисунок). Найти поступательное и угловое ускорение шестеренки.
 39281. Стержень АВ движется в плоскости XOY, опираясь своими концами на взаимно-перпендикулярные прямые ОХ и OY. Найти координаты мгновенного центра вращения в момент, когда угол ОАВ равен 60°.
 39282. По стенке дома затаскивают бревно длиной L, так что его верхний конец движется вертикально вверх с постоянной скоростью V, а нижний передвигается по земле. Найти угловую скорость и угловое ускорение точек бревна в различные моменты времени.
 39283. Найти мгновенный центр вращения и угловую скорость жесткого стержня, если известна величина и направление скорости одного конца и направление вектора скорости второго конца. Скорости концов стержня лежат в одной плоскости (см. рисунок).
 39284. Конус, лежащий боковой поверхностью на горизонтальной плоскости, катится по ней без проскальзывания, так что его вершина неподвижна. Угол при вершине конуса а = 90°. Центр основания конуса движется равномерно и возвращается в начальное положение через 1 с. Найти вектор углового ускорения конуса.
 39285. В конической зубчатой передаче (см. рисунок) оси вращения шестерней неподвижны, w1 = 10 об/мин; а = 30°, b = 60°. Найти w2.
 39286. Определить закон движения и траекторию точки, находящейся на расстоянии r от оси диска радиусом R, катящегося без проскальзывания по горизонтальной плоскости со скоростью V.
 39287. Найти угловую скорость, угловое ускорение и мгновенную ось вращения колеса автомобиля, когда он едет с постоянной по модулю скоростью V пo вогнутому мосту радиусом R. Радиус колеса r.
 39288. Найти мгновенный центр вращения эллиптического колеса, которое катится по вогнутому мосту с постоянной кривизной.
 39289. Найти угловую скорость, угловое ускорение и мгновенную ось вращения колеса трамвая при повороте. Колесо движется без проскальзывания с постоянной по модулю скоростью V по рельсу с радиусом закругления R. Радиус колеса r.
 39290. Две палочки, пересекающиеся под углом а , движутся поступательно со скоростями V перпендикулярно своей длине (см. рисунок). Найти скорость перемещения точки пересечения палочек. Может ли она превысить скорость света?
 39291. Фронт плоской волны падает под углом а на плоскую поверхность АВ (см. рисунок). Найти скорость перемещения точки F вдоль прямой АВ. Можно ли считать эту скорость скоростью распространения некоторого сигнала вдоль прямой АВ? Может ли она превысить скорость света?
 39292. Световой зайчик» от пульсара перемещается по поверхности Земли со скоростью V = 10^20 м/с (угловая скорость вращения пульсара w = 10 рад/с, расстояние до пульсара 10^19 м). Можно ли скорость перемещения «зайчика» рассматривать как скорость распространения светового сигнала?
 39293. Космонавт находится в неосвещенном космическом корабле, летящем относительно Земли со скоростью, близкой к скорости света. На небольшом расстоянии от космонавта по ходу корабля расположено зеркало. Через какое время космонавт увидит свое изображение в зеркале после включения источника света, расположенного рядом с космонавтом?
 39294. На ракете, летящей со скоростью, близкой к скорости света, произошла вспышка света. С точки зрения ракеты область, занятая фотонами, представляет собой равномерно расширяющуюся сферу. Каким представляется волновой фронт от вспышки неподвижному наблюдателю?
 39295. За пять лет наблюдения с Земли светящийся объект, находящийся на расстоянии 10^5 св. лет, совершил видимое угловое перемещение 10^-4 рад, т. е. его кажущаяся скорость перемещения равна удвоенной скорости света. Найдите, под каким углом к линии наблюдения может двигаться объект, чтобы его реальная скорость была меньше скорости света. Какова минимально возможная скорость объекта?
 39296. Каким будет казаться земному наблюдателю время обращения спутника Ио вокруг Юпитера? Как меняется это время в течение года? Истинный период обращения Ио 42 часа.
 39297. На концах стержня с собственной длиной L0, движущегося со скоростью V, одновременно в системе стержня зажигаются две лампочки. Какая из них загорится раньше (и насколько) в Л-системе отсчета? Какую вспышку увидит раньше (и насколько) неподвижный наблюдатель, находящийся в точке О (см. рисунок)?
 39298. Масштаб А'В' собственной длиной L0 движется со скоростью V вдоль такого же масштаба АВ (см. рисунок). Часы, находящиеся на концах масштабов в точках A' и В', А и В, синхронизованы в своих системах отсчета. В момент совпадения точек В' и A часы В' и A показывали одинаковое время t = 0. Какое время показывают каждые часы в момент совпадения точек A и А'; В и В'?
 39299. В точках 0 и 2L оси х одновременно происходят вспышки света. В Л-системе отсчета фотоны этих вспышек «встречаются» в точках, равноудаленных от вспышек, т. е. в вертикальной плоскости, проходящей через точку х = L. Какой будет форма поверхности для точек встречи фотонов в системе отсчета, движущейся вдоль оси х с релятивистской скоростью V?
 39300. Квадратная (в собственной системе отсчета) платформа со стороной L движется вдоль своей диагонали со скоростью V. В углах платформы установлены зеркала. Отражаясь от них, по периметру платформы движется фотон. Найти период его движения в Л-системе отсчета.