Earth curvature of space2 curvature of space1
Банк задач

Вход на сайт
Регистрация
Забыли пароль?
Статистика решений
Тип решенияКол-во
подробное решение60032
краткое решение7560
указания как решать1341
ответ (символьный)4704
ответ (численный)2335
нет ответа/решения3772
ВСЕГО79744

База задач ФизМатБанк

 24801. Человек поднимается по лестнице. Какая сила его движет? Совершает ли она работу?
 24802. Может ли потенциальная энергия быть отрицательной?
 24803. Снаряд массой 6 кг проходит в стволе орудия 2 м и вылетает с горизонтальной скоростью 600 м/сек. Считая, что снаряд движется с постоянным ускорением, вычислить мощность, развиваемую орудием за время выстрела.
 24804. К грузу массой m приложена постоянная вертикальная сила, поднимающая его за время t на высоту h. Какую работу совершила сила за время подъема?
 24805. Тело брошено вверх с начальной скоростью v0. На какой высоте его кинетическая энергия будет равна потенциальной? (Потенциальная энергия отсчитывается от уровня, с которого тело брошено.)
 24806. Шарик, висящий на нити, отклонили от вертикали на угол 60° и отпустили без начальной скорости (рис. ). В момент, когда шарик достиг вертикального положения, он ударился о вертикальную стенку и потерял половину своей кинетической энергии. На какой угол он отклонится после удара?
 24807. При ударе шарика о идеально гладкую горизонтальную плоскость (рис. ) теряется третья часть его кинетической энергии.Зная, что угол падения a равен 45°, найти угол отражения b.
 24808. Вертикально висящая недеформированная пружина имеет жесткость с = 10 H/см. К нижнему концу пружины подвесили груз весом 30 H и отпустили без начальной скорости. На сколько опустится груз? (Массу и вес пружины считать равными нулю.)
 24809. На гладкой горизонтальной плоскости лежали два шара, между которыми находилась сжатая пружина. Затем пружине дали возможность распрямиться, вследствие чего шары приобрели некоторые скорости. Вычислить их, зная, что массы шаров равны 1 кг и 2 кг, а энергия сжатой пружины равна 3 дж. (Массу пружины считать равной нулю.)
 24810. Два свинцовых шара поступательно движутся навстречу друг другу по прямой, соединяющей их центры. При столкновении шаров происходит неупругий удар, после которого шары движутся вместе. Найти количество тепла, выделившегося при ударе. Первый шар имел массу 1 кг и скорость 20 м/сек, а второй — массу 2 кг и скорость 4 м/сек.
 24811. Пуля пробивает ящик, стоящий на гладкой горизонтальной плоскости. Масса пули m, масса ящика М, пуля подлетает к ящику со скоростью v, а вылетает из него со скоростью v/2. Сколько тепла выделилось при движении пули в ящике? (Начальную и конечную скорости пули считать горизонтальными.)
 24812. Пуля попадает в ящик с песком и застревает в нем (рис. ). На сколько сожмется пружина жесткостью с, удерживающая ящик, если пуля имеет массу m и движется со скоростью v, а масса ящика с песком равна М?
 24813. Шарик массой m, летящий со скоростью v, ударяет в призму массой М и после удара движется вверх (рис. ). Считая удар абсолютно упругим (т. е. не сопровождающимся потерей энергии), найти скорость шарика и призмы после удара.
 24814. Тележка массой М стоит на гладкой горизонтальной плоскости (рис. ). На тележке укреплен математический маятник, имеющий массу m и длину l. В начальный момент тележка и маятник имели скорость, равную нулю, и нить маятника образовывала угол a с вертикалью. Найти скорость тележки в момент, когда маятник будет проходить через вертикальное положение. (Колеса тележки считать не имеющими массы.)
 24815. На стержне нулевой массы укреплены два шарика (рис. ), ОА = АВ = l, начальный угол отклонения стержня равен а, начальная угловая скорость стержня равна нулю. Найти угловую скорость стержня в момент, когда он проходит через вертикальное положение.
 24816. Через два гвоздя, находящиеся на одной горизонтали, переброшена нить, к концам которой прикреплены грузы массой m каждый (рис. ). К середине нити подвешивают груз массой М и предоставляют ему падать без начальной скорости. Определить наибольшее расстояние, на которое опустится груз М, считая, что длина нити достаточно велика и М < 2m. Трение нити о гвозди не учитывать.
 24817. Найти скорость грузов (см. рис. ), считая, что каждый из грузов прошел расстояние s. (Начальная скорость грузов равна нулю, трение отсутствует, блок не имеет массы.)
 24818. Найти скорости грузов (см. рис. ), считая, что правый груз прошел расстояние s. (Начальные скорости грузов равны нулю, трение отсутствует, блок не имеет массы.)
 24819. В конструкции, изображенной на рис. , груз m1 опускается, а груз m2 поднимается. Считая блоки не имеющими массы, найти скорость правого груза в момент, когда он прошел расстояние s. (Начальные скорости грузов равны нулю, трение отсутствует.)
 24820. Шестерня 1 под действием вращающего момента М приводит в движение шестерню 2 (см. рис. ). Шестерня 2 жестко связана со шкивом 3, на который намотана нить, несущая груз m. Шестерни и шкив невесомы; трения нет. Найти скорость груза в момент, когда он прошел расстояние s. Радиусы шестерен равны R1 и R2, радиус шкива равен r, начальная скорость груза равна нулю.
 24821. На однородный вал, способный вращаться вокруг горизонтальной оси, намотана нить, к концу которой приложена постоянная сила F (рис. ). Когда точка приложения этой силы прошла путь 20 см, скорость вращения вала достигла 50 об/мин. Какой будет скорость вала, когда точка A пройдет еще 20 см? (Вращение вала начиналось из состояния покоя.)
 24822. Тонкий однородный обруч катится по плоскости (рис. ). Масса обруча равна m, а скорость его центра равна v. Какова кинетическая энергия обруча?
 24823. На тонкий шкив, вращающийся вокруг горизонтальной оси, намотана нить, к концу которой подвешен груз (рис. ). Масса груза равна m, масса шкива равна М, массой спиц можно пренебречь; движение системы начинается из состояния покоя. Какую скорость будет иметь груз после того, как пройдет расстояние s?
 24824. Тонкий однородный обруч вкатывается вверх по наклонной плоскости, образующей угол a с горизонтом. Какой должна быть начальная скорость его центра, чтобы он переместился по плоскости на расстояние l? (Обруч катится без скольжения.)
 24825. Цилиндрический каток диаметром 0,6 м и массой 300 кг приводится в движение человеком, который давит на рукоятку ОА с постоянной силой F(рис ). Длина АО равна 1,5 м, высота точки A над горизонтом равна 1,2 м. Найти силу F, при которой человек, пройдя 2 м, сообщит оси катка скорость 0,8 м/сек. Массу катка считать сосредоточенной в его ободе.
 24826. Однородное тонкое кольцо вращается вокруг оси,проходящей через его центр перпендикулярно его плоскости. Каков радиус инерции этого кольца?
 24827. Круглый однородный диск массой m насажен на ось, проходящую через его центр перпендикулярно плоскости диска. Диск начинает вращаться из состояния покоя под действием постоянного вращающегося момента M. Какой будет его угловая скорость в момент, когда он повернется на угол ф? Радиус инерции диска равен R |/2.
 24828. Шестерня 2 приводится в движение шестерней 1, к которой приложен вращающий момент М (рис. ). Радиусы шестерен равны R1 и R2; масса первой шестерни равна нулю, масса второй шестерни равна m, а ее радиус инерции равен p; движение системы начинается из состояния покоя. Найти угловую скорость шестерни 2 в момент, когда она повернулась на угол ф.
 24829. Однородный круглый диск приводится во вращение грузом массой m(рис. ). Диск имеет массу М, радиус R и радиус инерции R|/2; движение начинается из состояния покоя. Найти скорость груза после того, как он прошел расстояние s.
 24830. Однородный стержень(рис. ) отклонен от вертикали на 90° и начинает движение без начальной скорости. Какой будет его угловая скорость, когда он достигнет вертикали? Длина стержня равна l, а его радиус инерции равен l |/ 3.
 24831. Момент инерции однородного шара относительно оси, проходящей через его центр, равен — 2/5 mR2. Считая Землю однородной, вычислите кинетическую энергию, обусловленную ее суточным вращением. Сравните полученную величину с годичной выработкой электроэнергии во всем мире. (Масса Земли — 6•10^24 кг, мировая добыча электроэнергии — около 5•10^12 кВт*ч в год.)
 24832. Вычислить ускорение грузов (см.рис 28). (Масса блока равна нулю.)
 24833. Найти ускорения грузов (см.рис.35), считая, что масса блока равна нулю.
 24834. Тонкий однородный обруч скатывается с наклонной плоскости, образующей угол a с горизонтом. Найти ускорение центра обруча.
 24835. Найти ускорение груза, изображенного на рис.. Масса груза равна m, масса вала равна нулю, момент, вращающий вал, равен М, радиус вала равен R.
 24836. Найти ускорение груза, изображенного на рис.. Масса груза равна m, масса вала равна m, а радиус инерции p момент, вращающий вал, равен М, радиус вала равен R.
 24837. Найти равнодействующую сил (рис. ): F1 = 50 H, F2 = 100 H, F3 = 60 H, F4 = 200 H.
 24838. Найти равнодействующую сил (рис. ): F1 = 100 H, F2 = 50 |/ 3 H, F3 = 50 H.
 24839. Груз весом P удерживается с помощью нитей АВ и BC (рис. ). Зная угол a, найти натяжения этих нитей.
 24840. Стержень весом P удерживается с помощью нитей АВ, ВС, СD (рис. ). Зная угол a, найти натяжения этих нитей.
 24841. Грузы P и Q висят, как показано на рис. . Зная углы a, b и вес Р, найти вес Q.
 24842. Сложить силы (рис. ): F1 = 10 H, F2 = 20 H, F3 = 30 H, F4 = 40 H; A1A2 = A2A3 = A3A4 = а.
 24843. Найти равнодействующую сил (рис. ): A1A2 = A2A3 = a; F1 = 10 H, F2 = 20 H, F3 = 50 H.
 24844. Найти равнодействующую сил (рис. ): A1А2 = А2А3 = a; F1 = 10H,F2 = 20 Н, F3 = 25 Н.
 24845. Решить Найти равнодействующую сил (рис. ): А1А2 = А2А3 = а; F1 = 10 Н, F2 = 20 Н, F3 = 30 Н.
 24846. Найти равнодействующую сил (рис. ). F1 = 5 H, F2 = 30 H, F3 = 45 H, F4 = 20 H; A1A2 = A2A3 = A3A4 = а.
 24847. Разложить силу R = 30 H на две параллельные силы, приложенные в точках A1, A2 (рис. ).
 24848. Разложить силу R = 50 H на две параллельные силы, приложенные в точках A1 , А2 (рис. ).
 24849. Однородное тело, состоящее из цилиндра и полушара, стоит на гладкой горизонтальной плоскости (рис. ). При каких значениях h это положение устойчиво? Центр тяжести полушара находится в точке C1, расстояние ОС1 равно 3/8 R.
 24850. Масса Земли в 81 раз больше массы Луны, а расстояние между центрами Земли и Луны равно 384 ООО км. Где находится центр тяжести (точнее, центр масс) системы Земля—Луна?
 24851. Невесомый стержень AB длиной 1 м подвешен на двух нитях (рис. ). В точке С на расстоянии АС = 0,25 м к стержню подвешен груз P весом 120 H. Вычислить натяжения нитей.
 24852. Однородная горизонтальная балка заложена в стену так, что опирается на нее в точках A и B (рис. ). Вес балки Q = 600 H, вес груза на ее конце P = 500 H; размеры указаны на чертеже. Найти реакции стены в точках A и В.
 24853. Однородные стержни AВ и ВС скреплены друг с другом в точке В (рис. ). Стержень AВ вдвое короче и вдвое легче стержня ВС; угол AВС прямой. Найти угол а.
 24854. Невесомый стержень AB шарнирно укреплен в точке С и связан двумя нитями с однородным стержнем DF шарнирно укрепленным в точке F (рис. ). АС = 2а, СВ = а, DF = 4а, вес стержня DF равен Р. Найти натяжения нитей.
 24855. Однородная балка весом 600 H и длиной 4 м опирается о гладкий пат и о выступ B, находящийся на высоте 3 м над полом (рис. ). Балка образует угол 30° с вертикалью и удерживается веревкой AС, протянутой у самого пола. Вычислить натяжение веревки, реакцию пола и реакцию выступа В.
 24856. Однородный стержень АВ упирается одним концом в угол и удерживается за другой конец нитью (рис. ). Вес стержня равен Р, а угол его наклона к горизонту равен а. Найти натяжение нити, а также давление стержня на пол и на стену.
 24857. Тонкий однородный стержень шарнирно укреплен в точке A и удерживается нитью ВС (рис. ). Вес стержня равен Р, угол его наклона к горизонту равен а. Найти реакцию шарнира и натяжение нити.
 24858. Верхний конец лестницы опирается на гладкую вертикальную стену, а нижний находится на шероховатом полу. Коэффициент трения между лестницей и полом равен 0,5. При каком наклоне лестницы она будет находиться в равновесии?
 24859. Однородный стержень АВ опирается о шероховатый пол и о гладкий выступ С (рис. ). Угол наклона стержня равен 45°, расстояние АС равно 0,75 АВ. При каком коэффициенте трения стержень будет находиться в равновесии в указанном положении?
 24860. Однородный стержень АВ опирается о гладкий пол и о шероховатый выступ С (рис. ). Угол наклона стержня равен 45°, расстояние АС равно 0,75 АВ. При каком коэффициенте трения стержень будет находиться в равновесии в указанном положении?
 24861. Однородный стержень АВ опирается о шероховатый пол и удерживается в равновесии горизонтальной нитью ВС (рис. ). Коэффициент трения между стержнем и полом равен 0,5. При каком наклоне стержня возможно это равновесие?
 24862. Однородный стержень АВ шарнирно укреплен в точке А и опирается о тележку (рис. ). Коэффициент трения в точке В равен 0,2, а сила давления стержня на тележку равна N. Какую горизонтальную силу нужно приложить к тележке, чтобы сдвинуть ее влево? (Силу трения тележки о пол не учитывать.)
 24863. Однородный стержень АВ шарнирно укреплен в точке А и опирается о тележку (рис. ). Коэффициент трения в точке В равен 0,2, а сила давления стержня на тележку равна N. Какую горизонтальную силу нужно приложить к тележке, чтобы сдвинуть ее вправо? (Силу трения тележки о пол не учитывать.)
 24864. На рис. изображен так называемый дифференциальный блок. Какой должна быть сила F, чтобы груз Р находился в равновесии? Верхний блок имеет радиусы R и r, нижний блок невесом.
 24865. На рис. схематически изображен дифференциальный ворот. Какую силу нужно приложить к рукоятке, чтобы равномерно поднимать груз Р? Вал имеет радиусы r и r’, а рукоятка - радиус R?. (Весом рукоятки и блока пренебречь.)
 24866. Груз весом Р поднимают с помощью червячной передачи(рис. ). Шестерня передачи имеет 30 зубьев, радиус вала, на который намотан трос, равен R?. Какой вращающий момент надо приложить к рукоятке, чтобы равномерно поднимать груз? Потери на трение не учитывать.
 24867. Груз весом Р поднимают с помощью червячной передачи(рис. ). Шестерня передачи имеет 30 зубьев, радиус вала, на который намотан трос, равен R. Какой вращающий момент надо приложить к рукоятке, чтобы равномерно поднимать груз? Коэффициент полезного действия передачи равен 80%.
 24868. Три зубчатых колеса связаны друг с другом так, как показано на рис. . Радиусы колес равны R1,R2,R3, момент, приложенный к первому колесу, равен M1. Какой момент M3 надо приложить к третьему колесу, чтобы колеса не вращались?
 24869. Три зубчатых колеса связаны друг с другом так, как показано на рис. . Радиусы колес равны R1, R2, R3. к первому колесу приложен момент М1 по часовой стрелке, а ко второму — момент М2 против часовой стрелки. Какой момент М3 надо приложить к третьему колесу, чтобы колеса не вращались?
 24870. Система, изображенная на рис. , находится в равновесии. Зная вес Р, найти силу F.
 24871. На рис. схематически показаны весы, на чашках которых стоят гири Р1 и P2 одинакового веса. Нарушится ли равновесие, если переставить гирю Р2 на край чашки?
 24872. Два медных шара массой 100 m каждый касаются друг друга. С какой силой они притягиваются? (Плотность меди 8,9 г/см3.)
 24873. В качестве единицы массы было предложено взять массу такой материальной точки, которая, притягивая точно такую же точку, находящуюся на расстоянии 1 м, сообщает ей ускорение 1 м/сек^2 (гравитационная единица массы). Как велика эта единица?
 24874. Вообразим, что строительная техника позволяет возводить сколь угодно высокие сооружения. Какую высоту должна иметь башня, расположенная на экваторе Земли, чтобы тело, находящееся на ее вершине, было невесомым?
 24875. Радиус Луны 1760 км, а сила тяжести на Луне в шесть раз меньше, чем на Земле. Какова на Луне первая космическая скорость?
 24876. Искусственный спутник движется вокруг Земли с первой космической скоростью. Доказать, что период его обращения совпадает с периодом воображаемого математического маятника, длина которого равна радиусу Земли.
 24877. Планета представляет собой однородный шар с плотностью р. Каков период обращения искусственного спутника, движущегося вблизи ее поверхности?
 24878. Спутник Сириуса, так называемый Сириус В состоит из вещества с плотностью 60 • 10^6 кг/м^3. Каким был бы период обращения искусственного спутника Земли, если бы Земля имела такую плотность?
 24879. Радиус орбиты Нептуна в 30 раз больше радиуса орбиты Земли. Какова продолжительность года на Нептуне?
 24880. Радиус земной орбиты 150 млн. км, а радиус Солнца 700 ООО км. Какова средняя плотность Солнца?
 24881. Две звезды одинаковой массы m движутся по окружности радиуса R, оставаясь одна против другой. Пренебрегая влиянием других небесных тел, найти скорость движения этих звезд.
 24882. Две звезды одинаковой массы m движутся по окружности радиуса R, оставаясь одна против другой. В центре окружности находится еще одна звезда массой m. Пренебрегая влиянием других небесных тел, найти скорость движения этих звезд.
 24883. Тело массой m удалено от Земли на много миллионов километров. Какова его потенциальная энергия относительно поверхности Земли? (Радиус Земли считать известным.)
 24884. Зная, что радиус Земли равен 6400 км и g = 9,8 м/сек^2, вычислить вторую космическую скорость.
 24885. Радиус Луны 1760 км, а ускорение свободного падения в шесть раз меньше, чем на Земле. Какова на Луне вторая космическая скорость?
 24886. Планета имеет массу М и радиус R. Какова на этой планете вторая космическая скорость?
 24887. Телу, находящемуся на поверхности Земли, сообщена вертикальная скорость 6 км/сек. Считая, что сопротивление воздуха отсутствует, найти максимальную высоту его подъема. (Радиус Земли 6400 км.)
 24888. Телу, находящемуся на поверхности Земли, сообщена вертикальная скорость 15 км/сек. Какую скорость будет оно иметь, когда удалится в бесконечность? Сопротивление атмосферы и влияние других небесных тел не учитывать.
 24889. На некоторой планете вторая космическая скорость равна 12 км/сек. Телу, находящемуся на поверхности этой планеты, сообщена вертикальная скорость 13 км/сек. Какую скорость будет оно иметь в бесконечности?
 24890. Вообразим, что Земля потеряла свою орбитальную скорость и стала падать на Солнце. С какой скоростью подойдет она к его поверхности? Радиус земной орбиты 150 млн.км, радиус Солнца 700 000 км, орбитальная скорость Земли 30 км/сек.
 24891. Искусственный спутник Земли движется на высоте, равной радиусу земного шара. Сравните его кинетическую энергию с потенциальной энергией относительно поверхности Земли.
 24892. Тело массой m находится на высоте h над Землей. Вычислить его потенциальную энергию относительно поверхности Земли и доказать, что при небольших значениях h ее можно считать равной mgh.
 24893. На какую высоту над Землей надо поднять математический маятник, чтобы период его колебаний увеличился на 1%?
 24894. В шахту какой глубины надо опустить математический маятник, чтобы период его колебаний возрос на 1%?
 24895. Формулой T = 2П |/ l/g можно пользоваться лишь при небольших колебаниях маятника. Более точной является формула T = 2П |/ l/g (1+ a^2/16), где а — амплитуда, выраженная в радианах. Как велика поправка, которую вносит эта формула при а = 20° и а = 45°?
 24896. Горизонтальная платформа совершает гармонические колебания в своей плоскости с частотой 2 гц и амплитудой 1 см. На платформе лежит груз, коэффициент трения которого о платформу равен 0,2. Будет ли груз скользить по платформе?
 24897. Груз, висящий на пружине, совершает вертикальные колебания. Каков период этих колебаний, если масса груза равна 2 кг, а жесткость пружины 450 н/м? Каким будет период этих колебаний на Луне?
 24898. Когда груз неподвижно висел на вертикальной пружине, ее удлинение было равно 5 см. Затем груз оттянули и отпустили, вследствие чего он начал колебаться. Каков период этих колебаний?
 24899. Груз (рис. ) имеет массу 1 кг, а связанные с ним пружины имеют жесткость 2500 н/м. Какой будет амплитуда колебаний этого груза, если сообщить ему начальную скорость 2 м/сек? Горизонтальная плоскость гладкая.
 24900. Груз (рис. ) имеет массу 1 кг, а связанные с ним пружины имеют жесткость 2500 н/м. Какой будет амплитуда колебаний этого груза, если его отклонить на 3 см от положения равновесия и сообщить ему начальную скорость 2 м/сек? Горизонтальная плоскость гладкая.