Earth curvature of space2 curvature of space1
Банк задач

Вход на сайт
Регистрация
Забыли пароль?
Статистика решений
Тип решенияКол-во
подробное решение57480
краткое решение7556
указания как решать1341
ответ (символьный)4703
ответ (численный)2335
нет ответа/решения3776
ВСЕГО77191

База задач ФизМатБанк

 17001. По двум скрещенным под прямым углом бесконечно длинным проводам текут токи I и 2I (I=100 A). Определить магнитную индукцию В в точке А. Расстояние d= 10 см.
 17002. По бесконечно длинному проводу, изогнутому так, как это показано на рисунке, течет ток I=200 А. Определить магнитную индукцию В в точке О. Радиус дуги R= 10 см.
 17003. По тонкому кольцу радиусом R= 20 см течет ток I=100 A. Определить магнитную индукцию В в точке А. Угол ?=п/3.
 17004. По двум бесконечно длинным проводам, скрещенным под прямым углом, текут токи I1 и I2=2I1 (I1=100 A). Определить магнитную индукцию В в точке А, равноудаленной от проводов на расстояние d= 10 см.
 17005. По бесконечно длинному проводу, изогнутому так, как это показано на рисунке, течет ток I=200 А. Определить магнитную индукцию В в точке О. Радиус дуги R= 10 см.
 17006. По тонкому кольцу течет ток I=80 A. Определить магнитную индукцию В в точке А, равноудаленной от точек кольца на расстояние r=10 см. Угол a=п/6.
 17007. По двум бесконечно длинным, прямым параллельным проводам текут одинаковые токи I=60 А. Определить магнитную индукцию В в точке А, равноудаленную от проводов на расстояние d=10 см. Угол ?=п/3.
 17008. Бесконечно длинный провод с током I= 50 А изогнут так, как это показано на рис.58. Определить магнитную индукцию В в точке А, лежащей на биссектрисе прямого угла на расстоянии d= 10 см от его вершины.
 17009. По двум параллельным проводам длиной l=3 м каждый текут одинаковые токи I= 500 A. Расстояние между проводами равно 10 см. Определить силу F взаимодействия проводов
 17010. По трем параллельным прямым проводам, находящихся на одинаковом расстоянии d= 20 см друг от друга, текут одинаковые токи I= 400 А. В двух проводах направления токов совпадают. Вычислить для каждого из проводов отношение силы, действующей на него, к его длине.
 17011. Квадратная проволочная рамка расположена в одной плоскости с длинным прямым проводом так, что две её стороны параллельны проводу. По рамке и проводу текут одинаковые токи I= 200 A. Определить силу F, действующую на рамку, если ближайшая к проводу сторона рамки находится от него на расстоянии, равном её длине.
 17012. Короткая катушка площадью поперечного сечения S= 250 см2, содержащая N=500 витков провода, по которому течет ток I= 5 A, помещена в однородное магнитное поле напряженностью Н= 1000 А/м. Найти: 1) магнитный момент pm катушки; 2) вращающий момент М, действующий на катушку, если ось катушки составляет угол ф= 30? с линиями поля.
 17013. Тонкий провод длиной l= 20 см изогнут в виде полукольца и помещен в магнитное поле (В=10 мТл) так, что площадь полукольца перпендикулярна линиям магнитной индукции. По проводу пропустили ток I= 50 A. Определить силу F, действующую на провод. Подводящие провода направлены вдоль линий магнитной индукции.
 17014. Шины генератора длиной l=4 м находятся на расстоянии d= 10 см друг от друга. Найти силу взаимного отталкивания шин при коротком замыкании, если ток Iкз короткого замыкания равен 5 кА.
 17015. Квадратный контур со стороной а=10 см, по которому течет ток I=50 А, свободно установился в однородном магнитном поле (В=10 мТл). Определить изменение DП потенциальной энергии контура при повороте вокруг оси, лежащей в плоскости контура, угол Q=180?.
 17016. Тонкое проводящее кольцо с током I= 40 A помещено в однородное магнитное поле (В=80 мТл). Плоскость кольца перпендикулярна линиям магнитной индукции. Радиус R кольца равен 20 см. Найти силу F, растягивающую кольцо.
 17017. Квадратная рамка из тонкого провода может свободно вращаться вокруг горизонтальной оси, совпадающей с одной из сторон. Масса m рамки равна 20 г. Рамку поместили в однородное магнитное поле (В=0,1 Тл), направленное вертикально вверх. Определить угол a, на который отклонилась рамка от вертикали, когда по ней пропустили ток I=10 A.
 17018. По круговому витку радиусом R= 5 см течет ток I=20 А. Виток расположен в однородном магнитном поле (В=40 мТл) так, что нормаль к плоскости контура составляет угол Q=п/6 с вектором В. Определить изменение DП потенциальной энергии контура при его повороте на угол ф=п/2 в направлении увеличения угла Q.
 17019. По тонкому кольцу радиусом R=10 см равномерно распределен заряд с линейной плотностью т=50 нКл/м. Кольцо вращается относительно оси, перпендикулярной плоскости кольца и проходящей через его центр, с частотой n= 10 c-1. Определить магнитный момент pm, обусловленный вращением кольца.
 17020. Диск радиусом R=8 см несет равномерно распределенный по поверхности заряд (s= 100 нКл/м2). Определить магнитный момент pm, обусловленный вращением диска, относительно оси, проходящей через его центр и перпендикулярной плоскости диска. Угловая скорость вращения диска ?= 60 рад/с.
 17021. Стержень длиной l= 20 см заряжен равномерно распределенным зарядом с линейной плотностью т=0,2 мкКл/м. Стержень вращается с частотой n= 10 c-1 относительно оси, перпендикулярной стержню и проходящей через его конец. Определить магнитный момент pm, обусловленный вращением стержня.
 17022. Протон движется по окружности радиусом R= 0,5 см с линейной скоростью v= 106 м/c. Определить магнитный момент pm, создаваемый эквивалентным круговым током.
 17023. Тонкое кольцо радиусом R= 10 см несет равномерно распределенный заряд Q=80 нКл. Кольцо вращается с угловой скоростью ?= 50 рад/c относительно оси, совпадающей с одним из диаметров кольца. Найти магнитный момент pm, обусловленный вращением кольца.
 17024. Заряд q= 0,1 мкКл равномерно распределен по стержню длиной l= 50 см. стержень вращается с угловой скоростью ?=20 рад/с относительно оси, перпендикулярной стержню и проходящей через его середину. Найти магнитный момент рm, обусловленный вращением стержня.
 17025. Электрон в атоме водорода движется вокруг ядра (протона) по окружности радиусом R=53 пм. Определить магнитный момент pm эквивалентного кругового тока.
 17026. Сплошной цилиндр радиусом R=4 см и высотой h=15 см несет равномерно распределенный по объему заряд (p=0,1 мкКл/м3). Цилиндр вращается с частотой n=10 c-1 относительно оси, совпадающей с его геометрической осью. Найти магнитный момент рm цилиндра, обусловленный его вращением.
 17027. По поверхности диска радиусом R=15 см равномерно распределен заряд Q=0,2мкКл. Диск вращается с угловой скоростью ?=30 рад/c относительно оси, перпендикулярной плоскости диска и проходящей через его центр. Определить магнитный момент pm, обусловленный вращением диска.
 17028. По тонкому стержню длиной l= 40 см равномерно распределен заряд Q= 60 нКл. Стержень вращается с частотой n= 12 с-1 относительно оси, перпендикулярной стержню и проходящей через стержень на расстоянии а=l/3 от одного из его концов. Определить магнитный момент pm, обусловленный вращением стержня.
 17029. Два иона разных масс с одинаковыми зарядами влетели в однородное магнитное поле, стали двигаться по окружностям радиусами R1= 3 см и R2= 1,73 см. Определить отношение масс ионов, если они прошли одинаковую ускоряющую разность потенциалов
 17030. Одноразрядный ион натрия прошел ускоряющую разность потенциалов U= 1 кВ и влетел перпендикулярно линиям магнитной индукции в однородное поле (В=0,5 Тл). Определить относительную атомную массу А иона, если он описал окружность радиусом R= 4,37 см.
 17031. Электрон прошел ускоряющую разность потенциалов U=800 B и, влетев в однородное магнитное поле В=47 мТл, стал двигаться по винтовой линии с шагом h= 6 см. Определить радиус R винтовой линии.
 17032. Альфа-частица прошла ускоряющую разность потенциалов U=300 B и, попав в однородное магнитное поле, стала двигаться по винтовой линии радиусом R= 1см и шагом h= 4 см. Определить магнитную индукцию В поля.
 17033. Заряженная частица прошла ускоряющую разность потенциалов U=100 В и, влетев в однородное магнитное поле (В=0,1 Тл), стала двигаться по винтовой линии с шагом h= 6,5 см и радиусом R=1 см. Определить отношение заряда частицы к её массе.
 17034. Электрон влетел в однородное магнитное поле (В=200 мТл) перпендикулярно линиям магнитной индукции. Определить силу эквивалентного кругового тока Iэкв, создаваемого движением электрона в магнитном поле.
 17035. Протон прошел ускоряющую разность потенциалов U=300 В и влетел в однородное магнитное поле (В= 20 мТл) под углом a=30? к линиям магнитной индукции. Определить шаг h и радиус R винтовой линии, по которой будет двигаться протон в магнитном поле.
 17036. Альфа-частица, пройдя ускоряющую разность потенциалов U, стала двигаться в однородном магнитном поле (В=50 мТл) по винтовой линии с шагом h= 5 см и радиусом R=1 см. Определить ускоряющую разность потенциалов, которую прошла альфа-частица.
 17037. Ион с кинетической энергией Т=1 кэВ попал в однородное магнитное поле (В=21 мТл) и стал двигаться по окружности. Определить магнитный момент pm эквивалентного кругового тока.
 17038. Ион, попав в магнитное поле (В= 0,01 Тл), стал двигаться по окружности. Определить кинетическую энергию Т (в эВ) иона, если магнитный момент pm эквивалентного кругового тока равен 1,6?10-14 А?м2.
 17039. Протон влетел в скрещенные под углом a=120? магнитное поле (В=50 мТл) и электрическое (Е= 20 кВ/м) поля. Определить ускорение а протона, если его скорость v (|v|= 4?105 м/с) перпендикулярна векторам Е и В.
 17040. Ион, пройдя ускоряющую разность потенциалов U= 645 B, влетел в скрещенные под прямым углом однородные магнитное (В= 1,5 мТл) и электрическое (Е= 200 В/м) поля. Определить отношение заряда иона к его массе, если ион в этих полях движется прямолинейно.
 17041. Альфа-частица влетела в скрещенные под прямым углом магнитное (В=5 мТл) и электрическое (Е= 30 кВ/м) поля. Определить ускорение а альфа-частицы, если её скорость v (v=2?106 м/с) перпендикулярна векторам В и Е, причем силы, действующие со стороны этих полей, противонаправлены.
 17042. Электрон, пройдя ускоряющую разность потенциалов U=1,2 кВ, попав в скрещенные под прямым углом однородные магнитное и электрическое поля. Определить напряженность Е электрического поля, если магнитная индукция В равна 6 мТл.
 17043. Однородные магнитное (В=2,5 мТл) и электрическое (Е= 10 кВ/м) поля скрещены под прямым углом. Электрон, скорость v которого равна 4?106 м/с, влетает в эти поля так, что силы, действующие на него со стороны магнитного и электрического полей, сонаправлены. Определить ускорение, а электрона.
 17044. Однозарядный ион лития m=7 а.е.м. прошел ускоряющую разность потенциалов U= 300 В и влетел в скрещенные под прямым углом магнитное и электрическое поля. Определить магнитную индукцию В поля, если траектория иона в скрещенных полях прямолинейна. Напряженность Е электрического поля равна 2 кВ/м.
 17045. Альфа-частица, имеющая скорость v= 2 Мм/с, влетает под углом a=30? к сонаправленному магнитному (В= 1 мТл) и электрическому (Е= 1кВ/м) полям. Определить ускорение а альфа-частицы.
 17046. Протон прошел некоторую ускоряющую разность потенциалов U и влетел в скрещенные поля: магнитное (В=5 мТл) и электрическое (Е= 20 кВ/м). Определить разность потенциалов U, если протон в скрещенных полях движется прямолинейно.
 17047. Магнитное (В=2 мТл) и электрическое (Е=1,6 кВ/м) поля сонаправлены. Перпендикулярно векторам В и Е влетает электрон со скоростью v=0,8 Мм/с. Определить ускорение а электрона.
 17048. В скрещенных под углом однородные магнитное (Н=1МА/м) и электрическое (Е= 50 кВ/м) поля влетел ион. При какой скорости v иона (по модулю и направлению) он будет двигаться в скрещенных полях прямолинейно?
 17049. Плоский контур площадью S=20 см2 находится в однородном магнитном поле (В=0,03 Тл). Определить магнитный поток Ф, пронизывающий контур, если плоскость его составляет угол ф=60? с направлением линий индукции
 17050. Магнитный поток Ф сквозь сечение соленоида равен 50 мкВб. Длина соленоида l= 50 см. Найти магнитный момент рm соленоида, если его витки плотно прилегают друг к другу.
 17051. В средней части соленоида, содержащего n=8 витков/см, помещен круговой виток диаметром d= 4 см. Плоскость витка расположена под углом ф=60? к оси соленоида. Определить магнитный поток Ф, пронизывающий виток, если по обмотке соленоида течет ток I= 1 A.
 17052. На длинный картонный каркас диаметром d=5 см уложена однослойная обмотка (виток к витку) из проволоки диаметром d1=0,2 мм. Определить магнитный поток Ф, создаваемый таким соленоидом при силе тока I= 0,5 A.
 17053. Квадратный контур со стороной а=10 см, в котором течет ток I= 6 A, находится в магнитном поле (В=0,8 Тл) под углом a=50? к линиям магнитной индукции. Какую работу нужно совершить, чтобы при неизменной силе тока в контуре изменить его форму на окружность?
 17054. Плоский контур с током I= 5 А свободно установился в однородном магнитном поле (В=0,4 Тл). Площадь контура S= 200 см2. Поддерживая ток в контуре неизменным, его повернули относительно оси, лежащей в плоскости контура, на угол a=40?. Определить совершенную при этом работу А.
 17055. Виток, в котором поддерживается постоянная сила тока I=60 A, свободно установился в однородном магнитном поле (В=20 мТл). Диаметр витка d= 10см. Какую работу А нужно совершить для того, чтобы повернуть виток относительно оси, совпадающей с диаметром, на угол a=п/3?
 17056. В однородном магнитном поле перпендикулярно линиям индукции расположен плоский контур площадью S=100 см2.Поддерживая в контуре постоянную силу тока I=50 А, его переместили из поля в область пространства, где поле отсутствует. Определить магнитную индукцию В поля, если при перемещении контура была совершена работа А= 0,4 Дж.
 17057. Плоский контур с током I=50 A расположен в однородном магнитном поле (В=0,6 Тл) так, что нормаль к контуру перпендикулярна линиям магнитной индукции. Определить работу, совершаемую силами поля при медленном повороте контура около оси, лежащей в плоскости контура, на угол a=30?.
 17058. Определить магнитный поток Ф, пронизывающий соленоид, если его длина l=50 см и магнитный момент pm=0,4 Вб.
 17059. В однородном магнитном поле (В=0,1 Тл) равномерно с частотой n=5 c-1 вращается стержень длиной l= 50 см так, что плоскость его вращения перпендикулярна линиям напряженности, а ось вращения проходит через один из его концов. Определить индуцируемую на концах стержня разность потенциалов U.
 17060. В однородном магнитном поле с индукцией В= 0,5 Тл вращается с частотой n=10 с-1 стержень длиной l= 20 см. Ось вращения параллельна линиям индукции и проходит через один из концов стержня перпендикулярно его оси. Определить разность потенциалов U на концах стержня.
 17061. В проволочное кольцо, присоединенное к баллистическому гальванометру, вставили прямой магнит. При этом по цепи прошел заряд Q=50 мкКл. Определить изменение магнитного потока DФ через кольцо, если сопротивление цепи гальванометра R= 10 Ом.
 17062. Тонкий медный провод массой m= 5г согнут в виде квадрата, и концы его замкнуты. Квадрат помещен в однородное магнитное поле (В=0,2 Тл) так, что его плоскость перпендикулярна линиям поля. Определить заряд Q, который потечет по проводнику, если квадрат, потянув за противоположные вершины, вытянуть в линию.
 17063. Рамка из провода сопротивлением R=0,04 Ом равномерно вращается в однородном магнитном поле (В=0,6 Тл). Ось вращения лежит в плоскости рамки и перпендикулярна линиям индукции. Площадь рамки S= 200 см2. Определить заряд Q, который потечет по рамке при изменении угла между нормалью к рамке и линиям индукции: 1) от 0 до 45?; 2) от 45 до 90?.
 17064. Проволочный виток диаметром D= 5 см и сопротивлением R=0,02 Ом находится в однородном магнитном поле (В=0,3 Тл). Плоскость витка составляет угол ф=40? с линиями индукции. Какой заряд Q протечет по витку при выключении магнитного поля?
 17065. Рамка, содержащая N=200 витков тонкого провода, может свободно вращаться относительно оси, лежащей в плоскости рамки. Площадь рамки S= 50 см2. Ось рамки перпендикулярна линиям индукции однородного магнитного поля (В=0,05 Тл). Определить максимальную ЭДС Еmax, которая индуцируется в рамке при её вращении с частотой n= 40 c-1.
 17066. Прямой проводящий стержень длиной l=40 см находится в однородном магнитном поле (B=0,1 Тл). Концы стержня замкнуты гибким проводом, находящимся вне поля. Сопротивление всей цепи R=0,5 Ом. Какая мощность Р потребуется для равномерного перемещения стержня перпендикулярно линиям магнитной индукции со скоростью v=10 м/c?
 17067. Проволочный контур площадью S=500 см2 и сопротивлением R=0,1 Ом равномерно вращается в однородном магнитном поле (В=0,5 Тл). Ось вращения лежит в плоскости кольца и перпендикулярна линиям магнитной индукции. Определить максимальную мощность Pmax, необходимую для вращения контура с угловой скоростью ?=50 рад/с.
 17068. Кольцо из медного провода массой m=10 г помещено в однородное магнитное поле (В=0,5 Тл) так, что плоскость кольца составляет угол ?= 60? с линиями магнитной индукции. Определить заряд Q, который пройдет по кольцу, если снять магнитное поле.
 17069. Соленоид сечением S= 10 см2 содержит N=103 витков. При силе тока I= 5 А магнитная индукция В поля внутри соленоида равна 0,05 Тл. Определить индуктивность соленоида.
 17070. На картонный каркас длиной l=0,8 м и диаметром D= 4 см намотан в один слой провод диаметром d=0,25 мм так, что витки плотно прилегают друг к другу. Вычислить индуктивность L получившегося соленоида.
 17071. Катушка, намотанная на магнитный цилиндрический каркас, имеет N=250 витков и индуктивность L1=36 мГн. Чтобы увеличить индуктивность катушки до L2=100 мГн, обмотку сняли и заменили обмоткой из более тонкой проволоки с таким расчетом, чтобы длина катушки осталась прежней. Сколько витков оказалось в катушке после перемотки?
 17072. Индуктивность L соленоида, намотанного в один слой на немагнитный каркас, равна 0,5 мГн. Длина l соленоида равна 0,6 м, диаметр D=2 см. Определить отношение n числа витков к его длине.
 17073. Соленоид содержит N=800 витков. Сечение сердечника (из немагнитного материала) S=10 см2. По обмотке течет ток, создающий поле с индукцией В= 8 мТл. Определить среднее значение ЭДС <Es> самоиндукции, которая возникает на зажимах соленоида, если сила тока, уменьшается практически до нуля за время Dt=0,8 мс.
 17074. По катушке индуктивностью L=8 мкГн течет ток I= 6 A. Определить среднее значение ЭДС <Es> самоиндукции, возникающей в контуре, если сила тока изменится практически до нуля за время Dt=5 мс
 17075. В электрической цепи, содержащей резистор сопротивлением R= 20 Ом и катушку индуктивностью L= 0,06 Гн, течет ток I= 20 A. Определить силу тока I в цепи через Dt= 0,2 мс после её размыкания.
 17076. Цепь состоит из катушки индуктивности L=0,1 Гн и источника тока. Источник тока отключили, не разрывая цепи. Время, через которое сила тока уменьшается до 0,001 первоначального значения, равно t=0,07 c. Определить сопротивление катушки.
 17077. Источник тока замкнули на катушку сопротивлением R=10 Ом и индуктивностью L= 0,2 Гн. Через какое время сила тока в цепи достигнет 50% максимального значения?
 17078. Источник тока замкнули на катушку сопротивлением R= 20 Ом. Через время t= 0,1 с сила тока достигла 0,95 предельного значения. Определить индуктивность L катушки.
 17079. Между стеклянной пластиной и лежащей не ней плосковыпуклой линзой находится жидкость. Найти показатель преломления жидкости, если радиус r3 третьего темного кольца Ньютона при наблюдении в отраженном свете с длиной волны L=0,6 мкм равен 0,82 мм. Радиус кривизны линзы R=0,5 м.
 17080. На тонкую пленку в направлении нормали к её поверхности падает монохроматический свет с длиной волны L=500 нм. Отраженный от неё свет максимально усилен вследствие интерференции. Определить минимальную толщину dmin пленки, если показатель преломления материала пленки n=1,4.
 17081. Расстояние L от щелей до экрана в опыте Юнга равно 1 м. Определить расстояние между щелями, если на отрезке длиной l = 1см укладывается N=10 темных интерференционных полос. Длина волны L= 0,7 мкм.
 17082. На стеклянную пластину положена выпуклой стороной плосковыпуклая линза. Сверху линза освещена монохроматическим светом длиной волны L= 500 нм. Найти радиус R линзы, если радиус четвертого, тёмного кольца Ньютона в отраженном свете r4= 2 мм.
 17083. На тонкую глицериновую пленку толщиной d= 1,5 мкм нормально к её поверхности падает белый свет. Определить длины волн L лучей видимого участка спектра (0,4 ? L ?0,8 мкм), которые будут ослаблены в результате интерференции.
 17084. На стеклянную пластину нанесен тонкий слой прозрачного вещества с показателем преломления n=1,3. Пластина освещена параллельным пучком монохроматического света с длиной волны L=640 нм, падающий на пластину нормально. Какую минимальную толщину dmin должен иметь слой, чтобы отраженный пучок имел наименьшую яркость?
 17085. На тонкий стеклянный клин падает нормально параллельный пучок света с длиной волны L= 500 нм. Расстояние между соседними темными интерференционными полосами в отраженном свете b=0,5 мм. Определить угол a между поверхностями клина. Показатель преломления стекла, из которого изготовлен клин, n= 1,6.
 17086. Плосковыпуклая стеклянная линза с f= 1 м лежит выпуклой стороной на стеклянной пластинке. Радиус пятого темного кольца Ньютона в отраженном свете r5= 1,1 мм. Определить длину волны L.
 17087. Между двумя плоскопараллельными пластинами на расстоянии L= 10 см от границы их соприкосновения находится проволока диаметром d=0,01 мм, образуя воздушный клин. Пластины освещаются нормально падающим монохроматическим светом (L=0,6 мкм). Определить ширину b интерференционных полос, наблюдаемых в отраженном свете.
 17088. Установка для наблюдения колец Ньютона освещается нормально падающим монохроматическим светом (L=590 нм). Радиус кривизны R линзы равен 5 см. Определить толщину d3 воздушного промежутка в том месте, где в отраженном свете наблюдается третье светлое кольцо.
 17089. Какое наименьшее число Nmin штрихов должна содержать дифракционная решетка, чтобы в спектре второго порядка можно было видеть раздельно две желтые линии натрия с длинами волн L1=589,0 нм и L2=589,6 нм? Какова длина l такой решетки, если постоянная решетки d=5мкм?
 17090. На поверхность дифракционной решетки нормально падает монохроматический свет. Постоянная дифракционной решетки в n =4,6 раз больше длины световой волны. Найти общее число М дифракционных максимумов, которые теоретически можно наблюдать в данном случае.
 17091. На дифракционную решетку падает нормально параллельный пучок белого света. Спектры третьего и четверного порядка частично накладываются друг на друга. На какую длину волны в спектре четвертого порядка накладывается граница (L=780 нм) спектра третьего порядка?
 17092. На дифракционную решетку, содержащую n=600 штрихов на миллиметр, падает нормально белый свет. Спектр проецируется помещенной вблизи решетки линзой на экран. Определить длину l спектра первого порядка на экране, если расстояние от линзы до экрана L= 1,2 м. Границы видимого спектра: Lкр=780 нм, Lф= 400 нм.
 17093. На грань кристалла каменной соли падает параллельный пучок рентгеновского излучения. Расстояние d между атомными плоскостями равно 280 пм. Под углом Q=65? к атомной плоскости наблюдается дифракционный максимум первого порядка. Определить длину волны L рентгеновского излучения.
 17094. На непрозрачную пластину с узкой щелью падает нормально плоская монохроматическая световая волна (L=600 нм). Угол отклонения лучей, соответствующих второму дифракционному максимуму, ф=20?. Определить ширину а щели.
 17095. На дифракционную решетку, содержащую n=100 штрихов на 1 мм, нормально падает монохроматический свет. Зрительная труба спектрометра наведена на максимум второго порядка. Чтобы навести трубу на другой максимум того же порядка, её нужно повернуть на угол Dф= 16?. Определить длину волны L света, падающего на решетку.
 17096. На дифракционную решетку падает нормально монохроматический свет (L=410 нм). Угол Dф между направлениями на максимумы первого и второго порядков равен 2?21'. Определить число n штрихов на 1 мм дифракционной решетки.
 17097. Постоянная дифракционной решетки в n=4 раза больше длины световой волны монохроматического света, нормально падающего на её поверхность. Определить угол a между первыми симметричными дифракционными максимумами.
 17098. Расстояние между штрихами дифракционной решетки d=4 мкм. На решетку падает нормально свет с длиной волны L=0,58 мкм. Максимум какого наибольшего порядка дает эта решетка?
 17099. Пластинку кварца толщиной d= 2 мм поместили между параллельными николями, в результате чего плоскость поляризации монохроматического света повернулась на угол ф=53?. Какой наименьшей толщины dmin следует взять пластинку, чтобы поле зрения поляриметра стало совершенно темным?
 17100. Параллельный пучок света переходит из глицерина в стекло так, что пучок, отразившись от границы раздела этих сред, оказывается максимально поляризованным. Определить угол y между падающим и преломленным пучками.